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1 Project Summary 

1.1 Major Goals and Objectives 

During this one and a half years’ foundation research project, we aimed to relate match-

ing probabilities to the error rates arising in common individuality studies and propose a 

paradigm for evidence interpretation based on error rate studies. In this research program 

we worked within the classical paradigm for evidence interpretation based on conditional 

match probabilities. 

For many researchers, a number of recent recommendations concerning the use of error rates 

in forensic science have shifted the focus of forensic evidence interpretation away from the 

formal subjective Bayesian approach long advocated by the research community. Some of 

the concerns related to error rates of forensic science methods are mentioned in the Congres-

sionally mandated 2009 National Academy of Science (NAS) report entitled “Strengthening 

Forensic Science in the United States: A Path Forward” [29], the 2016 President’s Council of 

Advisors on Science and Technology (PCAST) report entitled “Forensic Science in Criminal 

Courts: Ensuring Scientific Validity of Feature-Comparison Methods” [36] and the 2016 NIJ 

Forensic Science Technology Working Group Operation Requirements1 . These recommen-

dations have paralleled a string of papers expressing concerns about the formal Bayesian 

methods and the score-based approaches (see, for example, Iyer and Lund [19]; Morrison 

[27]). In response to these recommendations, as well as the success of the black box and 

white box studies in latent print analysis [44], a large number of other forensic disciplines 

have proposals for similar studies. These types of studies report an average error rate across 

a population of examiners for a given set of tasks related to identification of source problems. 

Although this is not the intention, these studies are often used to justify the conclusions that 

an examiner has made in a specific case. As statisticians focused on the identification of spe-

cific source problems, it is our view that it is unclear what these studies imply about a given 

1https://nij.ojp.gov/library/publications/forensic-science-technology-working-group-operational-
requirements 
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source identification problem. 

1.2 Research Questions 

To achieve our main objective, we set out to explore four main research questions: 

1. What are the formal sampling and statistical experiments for source and sub-source 

propositions for questioned document, fingerprints, and facial recognition evidence? 

2. Can a paradigm for reasoning about the source of traces based only on error rates used 

to characterize the performance of automated identification systems be proposed? 

3. Can a set of methods for characterizing the uncertainty about estimated error rates be 

developed? 

4. How can the results for the uncertainty associated with error rate based methods for 

quantifying evidence best be presented? 

1.3 Research Design & Methods 

1.3.1 Research Question 1: Formalize Sampling Models 

The forensic identification of source problem is an inferential analysis to support answering 

the question of where a collection of forensic evidence originated. (It should be noted that we 

use the term “identification” in this context to mean something less strong than is typically 

considered an “identification” in forensic science, i.e. the source of bullet is this gun, to the 

exclusion of all other guns.) The point of origin may be a person, as is the case for DNA and 

handwriting evidence, or a specific object or collection of objects, as is the case with firearms 

and glass evidence [22]. This type of problem is typically of interest to the criminal justice 

system. In supporting the quest for the answer to this problem, the evidence interpretation 

expert is expected to summarize the observed evidence relative to two competing proposi-

tions, often referred to as the prosecution and defense propositions, for how the evidence 

was generated [11, 1]. Typically when considering forensic evidence, the forensic scientist 

is concerned with source or sub-source level propositions or hypotheses, although activity 

level propositions might be considered in some cases. However, the court system is typically 
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concerned with offense level propositions concerning the guilt or innocence of the defendant 

(for a detailed description of the hierarchy of propositions, see [7, 22, 11]). The focus of this 

research project is on a particular class of source-level identification problems. 

In the identification of source problems, it is often of interest to determine whether a suspect 

can be linked to the evidence found at the scene of the crime. In a sense, this type of 

identification of the source problem is defined relative to a specified source population, and 

referred to as the identification of the specific source problem [32]. In this research project, we 

consider sources to be defined as generators or creators of the objects of interest (for example, 

a person is a generator of DNA and handwriting profiles, and a window is a generator of 

glass fragments). This means that all the evidential objects considered in a given case can 

be split into three different subsets: 

es: Set of objects associated with or generated by a specified source (denote the number of 

objects by ns) 

ea: Collection of sets of objects each associated with a source of traces in an alternative 

source population (denote the number of sources by na) 

eu: A set of trace objects that are all from the same unknown source (denote the number of 

trace objects by nu) 

We are then tasked with summarizing and presenting the evidence in es, ea, and  eu so that 

a decision maker can decide between two propositions for how the evidence has arisen. The 

two propositions can be stated as: 

Hp: The unknown source evidence eu and the specific source evidence es both originate from 

the specific source; 

Hd: The unknown source evidence eu does not originate from the specific source, but from 

some other source in the alternative source population. 

Following Ommen and Saunders [32], the two competing propositions imply two competing 
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statistical sampling models for defining the source of the trace evidence. These two models 

are expressed in the context of sampling models below. 

M1: The traces in eu are a simple random sample from the population of traces associated 

with the specified source 

M2: The traces in eu are a simple random sample from a randomly selected source in the 

alternative source population of sources. 

For the identification of specific source problem, the first model implies that eu has been 

generated according to the model for the specific source, implying that there are ns+nu traces 

from the specific source. In contrast, the second model implies that eu has been generated 

according to the model for the alternative source population, implying that there are na +1  

sources sampled from the background population. In this project, the investigators will build 

on these propositions, and formalize the underlying sampling and statistical experiments for 

pattern evidence such as questioned documents and latent fingerprints, see Section 4.2.1 for 

details. 

A common quantification of the weight of evidence for one proposition over another is the 

Bayesian likelihood ratio (LR) [23, 12, 24]. This approach is based on the theory that the 

examiner should report their relative belief concerning how reasonable it is to observe the 

evidence under two competing propositions for how the evidence has arisen. This statistic is 

commonly known as the Bayes Factor, or what is often referred to as the likelihood ratio in 

the field of forensic science. Once the Bayes Factor has been assigned, then the examiner can 

determine the relative merit of the two models given the information about the evidence by 

multiplying the Bayes Factor by his/her/their own prior odds. The prior odds is the a priori 

belief about the relative merit of the two models before the evidence has been observed. 

When determining probabilistic beliefs under the formal subjective Bayesian approach, it is 

important that all parties involved exhibit logic and coherence in their reasoning (see Schum 

[38] for an overview.) This approach to reasoning about evidence has been demonstrated to 
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be exceptionally powerful in evaluating and interpreting forensic evidence for simple DNA 

and the analytical measures concerning certain types of trace evidence. However, it is unclear 

how to define an error rate under this paradigm, since all probabilities are personal, and 

therefore dependent on a variety of factors external to the case at hand. 

1.3.2 Research Question 2: Evidence Interpretation via Error Rates 

The two-stage approach is the predominant approach to evidence interpretation in the United 

States and was developed by [21]. As the name suggests, it is based on two steps or stages. 

The first step considers whether the specific (sometimes called “putative”) source can be 

excluded as the actual source of the trace evidence. If the putative source cannot be excluded 

in the first step, the examiner is then expected to make an assessment concerning how many 

alternative sources (in some relevant population) can be excluded as the actual source of 

the trace evidence for the second step. In the ideal scenario, the second step would exclude 

all of the other potential sources, leaving the specific source as the only likely source of 

the trace evidence. This two stage approach to evidence interpretation was formalized by a 

statistician, J.B. Parker, working in the United Kingdom Atomic Energy Authority in the 

1960’s based on methods first developed in forensic science by Paul Kirk. These methods 

have been used throughout forensic science and many formally trained criminalists have 

training in this form of statistics or evidence interpretation. Under this paradigm, error 

rates are often characterized by random match probabilities. 

To interpret the value of evidence using the two-stage approach, the examiner must first 

define a scoring rule for comparing control samples from a known source (denoted by es) to  

a trace with an unknown source (denoted by eu), say C(eu, es). This scoring rule basically 

establishes a criteria for assessing the similarity of two sets of characteristics. Following 

Parker [34], assume that C(·, ·) is a dissimilarity score, i.e. the bigger the value of C(·, ·) the  

less similar eu and es are. If the value of the comparison C(eu, es) is less than some threshold, 

say τ , then the source of es cannot be excluded as the source of eu. It is important to note that 

even if eu and es are realizations of the samples from the same source, they will not typically 
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have the same amount of detail or information concerning their respective source(s). This 

can be illustrated by latent print examination, where the control print is a full-rolled print 

taken under controlled conditions and the latent (or recovered print) is a partial, incomplete 

print with less information. The comparison method C(·, ·) will need to account for this 

differing amount of information and/or complexity. 

There are several methods of defining the scoring rule or the comparison metric. One pop-

ular method, especially for pattern and impression evidence like fingerprints, is to use an 

automated identification system to compute the score. Generally speaking, automated iden-

tification systems are designed to input a trace, compare it to a finite list of candidate 

sources, and output a ranking of which source is most likely to have generated the trace 

sample. Most of the algorithms for comparing the evidential items are black-box and pro-

prietary. Nevertheless, the ranking is built off a score (which in the simplest case could be 

something like a Bayes classification rule). The outputted scores can then be used as C(·, ·) 
in the two-stage approach. 

For the first stage, if the examiner cannot exclude the trace as having arisen from source of 

the known control samples, then the examiner will state an association exists between the 

controls and the trace (e.g., “match,” “cannot exclude the source as the actual source of the 

traces,” “analytically indistinguishable in all measured properties,” etc.), and will proceed 

to the second stage. For the second stage, the examiner will need to present some measure 

of the strength of the association. There are various methods for measuring the strength 

of the association, with one of the more popular being “at what rate would alternative 

sources (in some specified and hopefully relevant population) not be excluded as the source 

of the traces?” This rate is commonly referred to as the coincidence probability or the random 

match probability. There are various other methods that have been suggested as appropriate 

for measuring the significance of a “match”, but we will focus on variations of the random 

match probability. When two samples provided by different sources are declared to “match” 
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by the comparison methodology, then a false match error has occurred, and the probability 

of this type of error is the random match probability (RMP). Similarly, when two samples 

provided by the same source are declared a “non-match”, then a false non-match error has 

occurred, and the probability of this error is the random non-match probability (RNMP). 

These RMPs and RNMPs are typically unknown quantities, and often need to be estimated 

from collected data (a recent MS thesis by Fuglsby [14] from SDSU presents algorithms for 

estimating RMPs and RNMPs for handwriting). To the best of our knowledge, there are 

three different approaches for conducting the second stage using variations of the random 

match probability. 

The first approach is to estimate of the probability of observing a randomly selected set of 

control samples from a randomly selected source (in some relevant population of sources) 

that is sufficiently similar to the trace samples that we would conclude a “match”. This 

approach is referred to as the trace-anchored approach. Then, the error rate of interest is 

the rate at which we would not exclude sources in the relevant background population, with 

samples collected in a manner similar to es, when compared to the observed trace samples 

in eu. This error rate can be estimated by 

1 
na 

rmp1(eu, ea) =  I C(eu, eai ) < τ  , 
na i=1 

where eai denotes a set of control samples from the ith alternative source. Smaller values 

of this error rate correspond to stronger evidence for associating the trace to the known 

source. 

The second approach is to estimate the probability of observing a randomly selected set of 

pseudo-trace samples under similar conditions to those under which eu was generated, from a 

randomly selected source (in some relevant population of sources), that is sufficiently similar 

to the specific source’s control samples that we would conclude a “match”. Pseudo-traces 

are control samples which mimic the same level of quality and detail to the observed trace 

8 
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samples. This approach is referred to as the source-anchored approach. Now, the error 

rate of interest is the rate at which we would not exclude pseudo-traces from sources in 

the alternative source population different from the specific source when compared to the 

observed samples from the specific source. This error rate can be estimated by 

1 
na 

rmp2(eu, ea) =  I C es, eui 
< τ  , 

na i=1 

where eui 
denote a pseudo-trace generated from the ith alternative source. Again, smaller 

values of this error rate correspond to stronger evidence for associating the trace to the 

known source. 

The third, and final, approach is to estimate the probability of observing a “match” when 

comparing a randomly selected set of pseudo-trace samples, under similar conditions that eu 

was generated, from a randomly selected source with control samples from another randomly 

selected source. This approach is commonly referred to as the general match approach. The 

error rate of interest here is the rate at which we would not exclude traces (similar to eu) 

from one source when compared to control samples (collected in a manner similar to how es 

was collected) from a different source, and is estimated by 

1 
na 

rmp3(eu, ea) =  I C eai , e  < τ , 
na (na − 1) uj 

i=1 j=i 

where eai denotes a set of control samples and eui 
denotes the pseudo-trace from the ith 

alternative source. Note that neither the control samples from the specific source, es, or the  

traces with an unknown source, eu, have been used in defining this error rate. Yet again, 

smaller values of this error rate correspond to stronger evidence for associating the trace to 

the known source. 

Now that all the relevant forensic error rates have been defined, we need to figure out a 

good way of presenting them to a fact-finder. The receiver operating characteristic (ROC) 

9 
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curve, which is commonly used in medical diagnostic studies and biometric system evaluation 

studies, is a plot of the true positive rate (TPR) (i.e. probability of identifying a case 

when the subject is truly diseased) versus false positive rate (FPR) (i.e. probability of 

identifying a case when the subject is not diseased) at different possible thresholds. The 

ROC curve is widely used in radiology, psychophysical and medical imaging research for 

detection performance, military monitoring, and industrial quality control [20]. The ROC 

curve indicates the trade-off between the TPR and FPR under different thresholds. It has 

many advantages and overcomes the limitation of using isolated measurements of 1-TPR and 

FPR. The ROC curve is plotted by connecting all the points generated by possible thresholds 

[49]. In this project, we propose to develop ROC curves for the Two-Stage approach using the 

relevant error rates for forensic evidence interpretation in place of the true and false positive 

error rates, see Section 4.2.2 for details. 

1.3.3 Research Question 3: Uncertainty Quantification 

Given its obvious importance, there has been an ongoing debate about how to properly 

express the forensic value of evidence [28]. Some advocate for the use of a single number 

(for example [41]), while others advocate for some sort of interval quantification that would 

provide the decision-maker with an idea of the uncertainty in the analysis (for example 

[19] and [40]). Many other researchers have provided their opinions on how to deal with 

uncertainty when quantifying the value of evidence, particularly in a special edition of Science 

and Justice [45, 4, 5, 8, 9, 26, 33, 42]. In keeping with this theme, we propose to quantify 

the uncertainty associated with an SLR system by providing a measure of the variability of 

the SLRs, see Section 4.2.3 for details. 

1.3.4 Research Question 4: Visualization 

Recently, there have been a handful of studies performed to determine how lay-persons (like 

jurors) perceive numerical and statistical results [43]. In an effort to increase lay-persons’ 

understanding of the strength of forensic evidence, the European Network of Forensic Science 

Institutes (ENFSI) has recommended the use of a verbal equivalent scale for interpreting the 

10 
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results of likelihood ratios (or Bayes Factors) [11]. The ENFSI likelihood ratio (Bayes Factor) 

verbal equivalent scale is in seven ordered categories ranging from “no support” to “extremely 

strong support” of one proposition over the other proposition. However, these likelihood ratio 

scales are most useful in the Bayesian paradigm, and are not designed to work within the 

Two-Stage process. Conclusion scales more closely aligned with the Two-Stage approach 

are not new; forensic document examiners use a 9-point scale for expressing conclusions 

regarding handwritten documents (ASTM: Standard Terminology for Expressing Conclusion 

of Forensic Document Examiners), and fingerprint examiners use a 3-point scale. 

As an alternative to these scales, graphics and visualizations are often an effective and 

efficient way to communicate statistical results to both experts and lay audiences. In this 

project, we propose to develop visualization methods for ROC curves and forensic error rates, 

see Section 4.2.4 for details. We will explore the use of interactive graphics, small multi-

ple charts, and the use of additional graphical features (e.g. color, shading) to link these 

methods in an intuitive manner. ROC curve visualizations are fairly common, however, the 

comparison of multiple ROC curves frequently triggers the sine illusion, which affects the 

perception of differences in the curves [46, 10]. Methods for visualizing the difference in ROC 

curves will be examined, with the goal of identifying guidelines for the visual comparison of 

two ROC curves. The methods developed for visualizing probabilistic evidence assessment 

will initially focus on practitioners, but with the additional goal to develop methods which 

can be adapted to explain these methods to lay audiences in an intuitive manner. 

1.4 Expected Applicability 

The 2009 NAS report and 2016 PCAST report state some forensic science disciplines are 

supported by little rigorous systematic research to validate the discipline’s basic premises and 

techniques and more federal funding is needed to support research in universities and private 

laboratories committed to such work [29]. The statistical objectives outlined in this project 

are at the center of investigations into the role of statistics in the evaluation of evidence. 

These objectives hold great potential for addressing some of the concerns expressed in the 

11 
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2009 NAS report and 2016 PCAST report. The successful completion of the goals proposed 

in this project will shift forensic practice paradigms in several important ways. First, formal-

izing source and sub-source propositions will build the foundation for forensic evidence inter-

pretation. Second, the proposed paradigm based on error rates involves the interpretation of 

forensic evidence in an exclusion stage and an atypicality stage. The proposed paradigm will 

be more intuitive for forensic scientists to understand than giving one single number based on 

the likelihood ratio. Interpreting the forensic evidence in separate stages will also provide the 

jury more information than the likelihood ratio. Third, interpretation of forensic evidence 

often involves uncertainty. The methods developed will quantify the uncertainty about esti-

mated error rates. Finally, a set of visualization tools to be developed will present forensic 

examiners intuitive statistical graphics about the uncertainty associated with error rate based 

methods for quantifying evidence. The computer codes for visualizing uncertainty of error 

rates based small sample were made publicly available on investigators’ webpages: 1) R codes 

and the datasets at https://sites.google.com/view/larrytang/software?authuser= 

0, 2) Shiny app at https://forensicaccuracy.shinyapps.io/order_constrained_ROC_ 

calculation/. The user guides were written in plain language so that forensic scientists 

will be able to implement the developed tool. 

Participants & Collaborators 

Dr. Larry Tang (PI - University of Central Florida): Dr. Tang’s research background 

in statistics in forensics and criminology, biometrics, and nonparametric methodology 

in high-dimensional settings was crucial to successful completion of the aim involving 

the relationship between ROC curves and likelihood ratios. His work with NIST in bio-

metrics on developing statistical methodology to advance the evaluation of fingerprint 

matching algorithms and to advance the understanding of forensic methods in biomet-

ric matching provided him with the necessary background to supervise completion of 

the project. 
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Dr. Danica Ommen (PI - Iowa State University): Dr. Ommen has extensive train-

ing and expertise in forensic statistics, and computational statistics. Her doctoral 

research concerned the use of Bayesian likelihood ratio and frequentist likelihood ratio 

in a forensic setting. Her past experiences deriving and evaluating likelihood ratios 

within complex scenarios aided the research group in developing and assessing novel 

methodologies developed for complex cases of handwriting evidence. Her expertise in 

programming and Bayesian methodology, as well as her forensic background was es-

pecially important to the successful completion of the proposed paradigms of evidence 

interpretation. 

Dr. Christopher Saunders (South Dakota State University): Dr. Saunders has past 

experience with NIH funded projects and Intelligence Community (IC) research fellow-

ships. Since completing his dissertation, Dr. Saunders has focused on providing statis-

tical support to the Intelligence Community, first as an IC Postdoctoral Research Fellow 

and then as a Research Assistant Professor with the Document Forensics Laboratory 

at George Mason University. In an ongoing collaboration with Gannon Technologies 

Group, he contributed to the development of a highly accurate handwriting based 

identification tool, known as FLASH ID. Dr. Saunders was specifically responsible for 

investigating the accuracy of the handwriting based biometric identification procedures 

as a function of the amount of handwritten text available. Recently Dr. Saunders has 

been focused on the development of forensic likelihood ratios for assessing the strength 

of handwriting evidence. Dr. Saunders’ background in statistical approximation theory 

was highly important in the development of conclusion scales. 

Dr. Susan Vanderplas (University of Nebraska, Lincoln): Dr. Susan Vanderplas spent 

several years working in industry as a data scientist. Her dissertation research focused 

on visualization of large data sets, statistical computing, and the perception of statisti-

cal graphics. She was responsible for researching and developing methods of graphical 
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and other visual representations for comparing ROC curves and other probability re-

lated functions. Dr. Vanderplas used her expertise in statistical graphics to develop 

visualization methods for ROC curves for error-based methods of evidence interpreta-

tion. Additionally, she provided computational support necessary for various aspects 

of the project. 

Dr. Donald Gantz (George Mason University): Dr. Gantz has had many years of 

successful research in applications to forensic science of pairwise methods of algorithmic 

data analysis and statistical modeling. He has lectured and published concerning the 

data analysis and statistical concepts that underpin this research project. Together 

with statistics professors, postdocs and graduate students in the forensics research 

group at George Mason founded by Dr. Gantz in 2006, they have published and 

presented their research internationally. 

Ms. Elham Tabassi (National Institute of Standards and Technology): Ms. Tabassi’s 

research area is machine leaning, computer vision and pattern recognition with appli-

cation in biometrics in general and friction ridge pattern recognition in particular. 

She is the principal architect of NIST Fingerprint Image Quality (NFIQ) which has 

become the defacto standard for measuring fingerprint image quality and is currently 

deployed in some of US Government and EU biometric applications. Her background 

was important for developing the practical Two-Stage Approach for latent prints. 

Unfunded Graduate Students: Ph.D. students whose research was related to this funded 

project 

• Ms. Cami Fuglsby (South Dakota State University): advised by Dr. Saunders 

• Dr. Xiaochen Zhu (George Mason University): advised by Dr. Larry Tang 

• Ms. Mengling He (University of Central Florida): advised by Dr. Larry Tang 

14 



Final Research Report: 2018-DU-BX-4228 

3 Changes and Justification 

One of the investigators, Dr. John Miller, retired from George Mason University in 2019 and 

was unable to contribute to the project. Dr. Miller was initially budgeted for implementing 

the likelihood ratio approach on fingerprint matching scores. This planned activity was 

carried out by other investigators on the project, Dr. Larry Tang and Dr. Danica Ommen. 

No replacement personnel were requested for the project. The budgets for the project awards 

were reallocated to Dr. Larry Tang and Dr. Danica Ommen due to departure of Dr. Miller 

from the project. 

One of the PIs, Dr. Tang, left George Mason University and started his new position at Uni-

versity of Central Florida starting Aug. 12, 2019. The grant was transferred from George 

Mason University to University of Central Florida. The grant was successfully transferred in 

November of 2020 and the corresponding sub-awards were successfully set up in December. 

Due to the change of institution of Dr. Tang, the PIs have spent considerable time reorga-

nizing the grant research and reassessing the current capabilities in early 2019. Then, they 

requested and received a No-Cost Extension to the proposal. The PIs have prepared a new 

time-line for the research objectives associated with the grant. 

Dr. Saunders requested the change in the travel budget to support the international travel 

to the SimStat 2019 workshop in Salzburg, Austria. The request was approved. He chaired 

and organized an invited session on the research associated with this award. 

4 Outcomes 

4.1 Activities & Accomplishments 

During the period of performance, the lead investigators (Tang, Ommen, Saunders) engaged 

in conference calls via Zoom every other week to update the other participants on research 

projects and to coordinate and conduct collaborative efforts. Overall, this award resulted 

in the training of 2 graduate students in the interpretation of forensic evidence, including 

1 PhD graduate and 1 MS graduate. This award directly resulted in 1 PhD dissertation, 1 
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published paper with R codes, a R-Shiny app and 1 submitted paper. For a detailed list of 

research products and conference presentations, see Section 5. 

4.2 Results and Findings 

4.2.1 Research Question 1: Formalize Sampling Models 

We considered a formal set-up of the identification of source problem for three different 

evidence types in this project: 1) questioned documents, 2) latent fingerprints, 3) facial 

recognition. 

Questioned Documents 

The handwriting dataset we used was collected for NIJ award #2017-DN-BX-0148 lead by 

PI Mike Caligiuri. The dataset consists of measurements of several kinematic features for 

writing from 33 individuals and was described in Fuglsby et al. [15]. Following Ommen 

and Saunders [32], we considered the common source problem formulation. This particular 

formulation was chosen due to the nature of the data collection as short phrases rather 

than the subjects writing long, full-paragraph prompts. The common source propositions 

for handwriting evidence can be stated as 

Hp: The two questioned documents originate from the same unknown writer. 

Hd: The two questioned documents originate from two different unknown writers. 

The formal sampling models corresponding to the handwriting data deal with the generation 

of the kinematic features, and are equivalent to the common source sampling models provided 

in Ommen and Saunders [32]. However, it is not known at this time what the sampling 

distributions, denoted by Fa and G, for the kinematic data look like. For this reason, 

we chose to work with a score that captures the Wasserstein distance between kinematic 

features when developing ROC curves for this evidence (see Ommen et al. [30] for details 

of the score and see the Sept 2019 presentation by Fuglsby for further details of the ROC 

curve development). 
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Latent Fingerprints 

The fingerprint data we used in the project came from the National Institute of Standards 

and Technology Special Database 4 (NIST SD4). The process of comparing fingerprints most 

often involves comparing a latent fingermark from a crime scene to a full-rolled fingerprint 

from a suspect. For this reason, we chose to use the specific source development of the 

sampling models given in Ommen and Saunders [32]. 

In the fingerprint context, possible sets of propositions include: 

1. Hp: the fingermark and fingerprint originate from the same person, vs. 

Hd: the fingermark and fingerprint originate from different persons. 

2. Hp: the fingermark and fingerprint originate from the same finger, vs. 

Hd: the fingermark and fingerprint originate from different fingers from the same 

person. 

3. Hp: the fingermark and fingerprint originate from the same finger, vs. 

Hd: the fingermark and fingerprint originate from different fingers from different per-

sons. 

The formal sampling models corresponding to the fingerprint data deal with the generation 

of minutiae, and are equivalent to the specific source sampling models provided in Ommen 

and Saunders [32]. Similar to the questioned documents example, it is not known at this 

time what the sampling distributions, denoted by Fs, Fa, and  G, for the minutiae look like. 

For this reason, we chose to work with AFIS scores instead. 

Facial Recognition 

The facial recognition data that we used in the project came from the publicly available 

“Good, Bad, and Ugly” dataset. The common source propositions for facial recognition can 

be stated as 
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Hp: The two facial pictures originate from the same unknown person. 

Hd: The two facial pictures originate from two different unknown people. 

The formal sampling models corresponding to the facial recognition data deal with the gen-

eration of facial images, and are equivalent to the common source sampling models provided 

in Ommen and Saunders [32]. However, it is not known at this time what the sampling 

distributions, denoted by Fa and G, for facial images look like. For this reason, we chose to 

work with comparison scores. The comparison scores represent measurement of the charac-

teristic difference, and a smaller distance indicates higher similarity. So a low score represent 

a pair of pictures with high similarity. 

4.2.2 Research Question 2: Evidence Interpretation via Error Rates 

In situations where the features are too high-dimensional and complex, the score-based 

likelihood ratio (SLR) is used to provide some information about the value of evidence. 

Rather than modelling the original measurements, this approach models “scores” resulting 

from applying a distance function to the pair (X, Y ). The definition of the SLR is 

Pr(SX,Y |Hp)
SLR(SX,Y ) =  ,

P r(SX,Y |Hd) 

where SX,Y = S(X1, ..., Xm, Y1, ..., Yn) is the (dis)similarity score, a function of X and Y , 

Hp is the proposition that the pair X and Y come from the same source, and Hd is the 

proposition that the pair X and Y come from different sources. In contrast to the specific 

source propositions for the LR, the propositions for the SLR are those for the common 

source problem [31]. Due to usually small sample sizes of X and Y , the reference population 

database is valuable for the estimation of the distributions of scores needed to compute the 

SLR. Typically, this is done by performing all pairwise comparisons of objects in the reference 

database. The score from the ith pair of objects from the same subject, Tp,i, i = 1, . . . ,M , has  

a cumulative distribution function (CDF), Fp, and the probability density function (pdf), 

fp. The score from the jth pair of subjects, Td,j , j  = 1, . . . , N , has  a CDF,  Fd, and the pdf, 
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fd. Here, the sample sizes for the pairwise comparisons are larger than the original sample 

sizes. 

Evaluating the accuracy of diagnostic biomarkers is important in diagnostic medicine re-

search. In diagnostic medicine, biomarkers are evaluated for their accuracy to distinguish 

a case who is truly diseased from a control who is not diseased. Diagnostic biomarker re-

sults can be binary, ordinal and continuous. Some biomarkers have binary results. Some 

biomarkers results have some ordered values such as 1, 2, 3, which are called ordinal data 

[3]. Most of the biomarkers in proteomics and genetics, are on a continuous scale [39]. The 

receiver operating characteristic (ROC) curve is commonly used to summarize the accuracy 

of biomarkers with continuous or ordinal outcomes at different chosen thresholds. 

The ROC curve indicates the trade-off between the true positive rate (TPR) (i.e. probability 

of identifying a case when the subject is truly diseased) and the false positive rate (FPR) 

(i.e. probability of identifying a case when the subject is not diseased). The ROC curve is 

plotted by connecting all the points generated by a variety of possible thresholds [49]. The 

ROC curve is also widely used in radiology, psychophysical and medical imaging research for 

detection performance, military monitoring, and industrial quality control [20]. The ROC 

curve has many advantages and overcomes the limitation of using isolated measurements of 

TPR and FPR. 

In the mathematical notation, TPR is given by P (T > c|D = 1) and FPR is given by 

P (T > c|D = 0) , where c denotes the threshold, T denotes the biomarker outcome and D 

is the indicator for disease status with 1 being a case and 0 being a control. A biomarker 

with 100% TPR and 0% FPR is a perfect predictor. 

The commonly used ROC measures are the diagnostic likelihood ratios (not to be confused 

with the LR weight of evidence defined above), the area under the ROC curve (AUC), 

the TPR at a fixed FPR, and the partial area under the ROC curve (pAUC). Most ROC 

curves are concave and above the chance diagonal which is the line segment between (0, 0) 
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and (1, 1). However, some of them are below the chance diagonal and are called improper 

curves [17]. The AUC between 0.5 and 1 indicates that the diagnostic biomarker has a good 

performance on detecting the case condition and control condition. The closer the curve 

is to the left upper corner, the larger the ROC curve area is and the better ability of the 

diagnostic biomarker has. The perfect biomarker has an AUC of 1. 

Order-Restricted ROC Curve Estimation 

Consider V classification markers measured on continuous scales to distinguish individuals 

between diseased and non-diseased groups. In biometric recognition, a classification marker 

is a matching algorithm used to recognize an individual from others. The diseased and 

non-diseased observations correspond to genuine and imposter scores, respectively. 

Without loss of generality, we assume that the outcome of a classification marker is from the 

diseased (non-diseased) group if its value is greater (smaller) than a given threshold. Let Fv 

and Gv be the distribution function of the diseased and non-diseased observations for the vth 

marker, where v = 1, · · ·  , V . The ROC curve of the vth marker at a threshold value u is then 

R (u) = 1−F {G−1(1−u)}, where  G−1(u) = inf{t : G (t) ≥ u} and u ∈ [0, 1]. The AUC and 

and pAUC [1 − F {G−1(1 − u)}]du In various applications, AUC pAUC 

v v v v v 

pAUC over the range (0, τ) of the  vth marker are then AUCv = 1
[1 − F {G−1(1 − u)}]du

0 v v 

τ 
= v . or arev 0 v 

used to compare the performance among markers. As noted earlier, a natural stochastic 

ordering commonly occurs among observations collected under different conditions, which 

is particularly evident in fingerprint data. To elaborate, consider a classification marker v 

with observations Y from the non-diseased group and X from the diseased group. Then Y is 

said to be stochastically smaller than X, denoted by Y st X, if  Fv(x) ≤ Gv(x) for  x ∈ R. 
Our aim is to model Rv(u) as an empirical process, and obtain the estimators for AUCv 

and pAUCv, v = 1, · · ·  , V , while taking such order constraints into account. The estimators 

constructed in this way are referred to as order-restricted estimators. 

Suppose that the V classification markers are applied to m subjects. Corresponding to each 
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subject i (= 1, · · ·  ,m) and marker v (= 1, · · ·  , V ), the observations from Fv and Gv are 

denoted by {Xvip : p = 1, · · ·  ,mvi} and {Yviq : q = 1, · · ·  , nvi}, respectively. For each 

marker v, the observations {Xvip, Yviq : p = 1, · · ·  ,mvi, q  = 1, · · ·  , nvi} within a subject 

are clustered. Moreover, between-marker correlation also exists among the observations for 

different markers. With such a data structure, both within-cluster and between-marker 

correlations need to be accounted for. 

To accommodate such a complex correlation structure, we introduce the weighted ROC 

curve estimation which assigns different weights to the observations from different clusters. 

For v = 1, · · ·  , V , write m = m mvi and nv = i
m 
=1 nvi. Let  {wvi, i  = 1, · · ·  ,m} andv i=1 

{wvi, i  = 1, · · ·  ,m} be two sequences of weights satisfying (1/m ) m mviwvi = 1  and  v i=1 

(1/n ) m = 1. The weighted ROC curve estimators are established based on thev i=1 nviwvi 

following weighted empirical estimates of distribution functions 

m mvi m nvi1 1 
Fv(x) =  wvi I(Xvip ≤ x) and  Gv(x) =  I(Yviq ≤ x). (1)wvi 

vmv i=1 p=1 
n 

i=1 q=1 

Here the weights wvi and wvi are used to account for within-cluster correlations. Choices of 

weights will be discussed in detail later. With Fv and Gv, the weighted ROC curve estimator 

is then given by Rv(u) = 1  − Fv{G−1(1 − u)}, which subsequently yields an AUC estimatorv 

AUCv = 1 
R (u)du and pAUC estimator pAUC = τ 

R (u)du over (0, τ).
0 v v 0 v 

By incorporating the order restriction, we consider the order-restricted estimators for Fv and 

Gv defined as Fv(x) = min{Fv(x), Qv(x)} and Gv(x) = max{Gv(x), Qv(x)}, respectively, 
where Qv(x) =  ηvFv(x) + (1  − ηv)Gv(x) with 0  ≤ ηv ≤ 1 is an estimator of the distribu-

tion function that generates the pooled observations {Xvi1, · · ·  , Xvimvi , Yvi1, · · ·  , Yvinvi , i  = 

1, · · ·  ,m}. Notice that Fv(x) and  Gv(x) are “order-preserving” in the sense that Fv(x) ≤ 

Gv(x) for any x ∈ R. A natural choice of ηv is the proportion of sample sizes, namely 

mv/(mv + nv). Certainly, other alternatives can be used, such as the MSE-based weights 

[48] and proportion of two samples’ mean value. In this article, we derive theoretical prop-
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erties for the order-restricted estimators with a general ηv, provided that 0 ≤ ηv ≤ 1; in the 

simulation studies, we use ηv as the proportion of sample sizes. 

Subsequently, Rv(u) is estimated by the empirical process Rv(u) = 1  − Fv{G−1(1 − u)},v 

where 0 < u <  1. The summary statistics of the order-restricted ROC curve, AUCv and 

pAUCv for the vth marker, are given by 

1 τ 

AUCv = [1 − Fv{G−1(1 − u)}]du and pAUC = [1 − Fv{G−1(1 − u)}]du. (2)v v v 
0 0 

Proposition 1. The statistic AUCv is equal to 

mv +nv 

1 − ηv(1 − ηv)AkBk, (3) 
k=1 

(v) (v) (v) (v)
where Ak = ηvFv(Z )/(1 − ηv) +  Fv(Z ) ∧ Gv(Z ), and Bk = {(1 − ηv)Gv(Z )/ηv +k k k k 

(v) (v) (v) (v) (v)
Fv(Z )  Gv(Z )} − {(1 − ηv)Gv(Z )/ηv + Fv(Z )  Gv(Z )}.k k k−1 k−1 k−1 

We exemplify our proposed method with the NIST SD4 dataset, which is established to 

evaluate the accuracy of fingerprint matching algorithms in the NIST Biometric Image Soft-

ware package [47]. According to Henry classification system [25], fingerprint images can be 

classified into five coarse-level classes: “Arch”, “Left Loop”, “Right Loop”, “Tented Arch”, 

and “Whorl”. The coarse-level classification is mainly used for excluding an individual, and 

not for identification. For the identification purpose, fingerprint features such as ridge end-

ings and bifurcation provide a finer level classification, which is referred to as a minutiae. 

One of the widely used minutiae-based matcher is the NIST’s Bozorth matcher, which was 

developed to match minutiae’s locations and orientation of two fingerprints, and give a score 

based on how well they match [47]. The Bozorth matcher was run on all pairs of fingerprints 

from SD4 database. 

It is worth noting that the imposter scores of different subjects can be correlated, since they 
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may be obtained by being matched with the same subject. To maintain independence among 

scores from different subjects, instead of using all subjects in the sample, we first randomly 

divided the sample into two groups and chose the first group of subjects as the data sample 

for analysis. For these selected subjects, only the imposter scores obtained by matching 

their fingerprints to those of subjects in the second group were considered. According to the 

ACE-V process of fingerprint recognition [2], we took the maximum values of all imposter 

scores of each subject as its final imposter score. If the maximum imposter scores of two 

subjects were obtained by matching to the same subject, then the subject with the largest 

imposter score is retained. Since each finger has two rolled fingerprints, if the scores of the 

matched finger which yields the maximum imposter score are very close (both larger than 

95% quantile of all imposter scores), we then used both scores. On the other hand, for the 

genuine score, two types of matching scores were obtained for each subject: matching an 

image to itself and matching an image to its rolled version. Here we used the latter. As a 

result, the genuine and imposter scores of different subjects are independent. 

To evaluate the discrimination accuracy of the Bozorth matcher, we apply the conventional, 

weighted empirical, and proposed method to these scores. For illustration, we first focus on 

the fingerprint matching scores of all female subjects in the “Arch” class. This subgroup 

includes 102 subjects. The intraclass correlation coefficients for the genuine and imposter 

scores are estimated as 1 = 1 (since each subject has only one genuine score) and 1 = 

0.285, respectively. The estimated ROC curves by three methods are displayed in Figure 

1a. Figure 1b presents the ratios of variance estimates of the conventional and weighted 

empirical ROC curve estimators to the proposed estimators, calculated based on 1000 Monte 

Carlo replications. This figure shows that the proposed ROC curves estimators always have 

smaller variances than the unrestricted estimators, since the ratios are all larger than 1. 

Moreover, we also compare the performance of the three methods in estimating AUC and 

pAUC based on the variance and p-values for testing the null hypotheses H0 : AUC = θ1 and 

H0 : pAUC =  θ2, where  θ1 ∈ {0.6, 0.7, 0.8} and θ2 ∈ {0.2, 0.3, 0.4}. The results are displayed 
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Figure 1: (a) ROC curve estimator for female fingerprint data: the conventional estimator 
(black solid line); the weighted empirical estimator (blue dashed line); the proposed estimator 
(red dotted line); (b) MSE ratios of the conventional and weighted empirical ROC estimators 
to the proposed estimators. 

in Table 1. From this table, we can see that the variances of the proposed AUC and pAUC 

estimators are much smaller than the corresponding estimators in comparison, and the p-

values of the proposed method are always the smallest among the three methods. 

Relationship between SLR and ROC Curve 

In this section, we explore the relationship between the SLR and the ROC curve. Recently, 

there has been a lot of debate surrounding the 2016 PCAST report [36]. In the report, 

there was a lot of attention on “feature-comparison” methods in forensic science. These 

methods refer to the process by which examiners perform visual comparisons of evidence, 

such as fingerprints, firearms, footwear, hair, and bite marks. The foremost recommenda-

tion of the report was that, in an effort to strengthen the scientific foundations of forensic 

examinations, there needs to be a comprehensive study of the error rates associated with 

each one of these forensic fields. To follow this recommendation, it is logical to apply the 

binary classification techniques associated with the ROC curve to get the associated error 

rates (TPR, FPR). However, this contradicts other recommendations to compute the LR 
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Table 1: Performance of the conventional (Mc), weighted empirical (Mw), and the proposed 
(Mr) method on the estimation and hypothesis testing of AUC and pAUC for female fin-
gerprint data. The left panel is for estimation of the logit transformation of AUC and 
pAUC; the right panel are the p-values for the null hypothesis AUC = 0.6, 0.7, 0.8 and  
pAUC = 0.2, 0.3, 0.4. 

Estimation Test 

log 

log 

AUC 
1−AUC 

pAUC 
1−pAUC 

Estimate Variance CI 

Mc 0.982 0.084 [0.964, 1.000] 

Mw 1.085 0.086 [1.076, 1.094] 

Mr 0.987 0.021 [0.969, 1.006] 

Estimate Variance CI 

Mc -1.023 0.091 [-1.042, -1.004] 

Mw -1.018 0.092 [-1.038, -0.999] 

Mr -1.024 0.023 [-1.034, -1.015] 

AUC=0.6 AUC=0.7 AUC=0.8 

0.046 0.642 0.162 

0.047 0.633 0.173 

< .001 0.090 0.032 

pAUC=0.2 pAUC=0.3 pAUC=0.4 

0.230 0.560 0.041 

0.226 0.572 0.043 

0.017 0.245 < .001 

(or SLR) and provide its value without going so far as to say which of the two propositions 

to choose. Any relationship between the SLR and ROC curve will bridge the gap between 

the binary classification role of the ROC curve (under which error rates are clearly defined) 

and the “weight of evidence”-style role of the SLR (under which error rates are ambiguously 

defined, at best). If successful, our method will satisfy both the recommendation of the 

PCAST report (relying heavily on error rates) as well as the recommendation to compute 

likelihood ratios. 

Denote continuous similarity scores for the ith pair of mated evidence measurements as 

Tp,i, i = 1, . . . ,M , which follow a distribution, Fp, and continuous similarity scores for the jth 

pair of non-mated evidence measurement as Td,j , j  = 1, . . . , N , which follow a distribution, 

Fd. In the forensic context, there are two common types of “error rates,” the random match 

probability (RMP) and the random non-match probability (RNMP). The RMP and RNMP 

are defined relative to a threshold c; when a score T exceeds c then the pair the produced T 

is declared a “match” and when T is smaller than c then the pair that produced T is declared 

a “non-match.” Therefore, the RMP is defined as RMP (c) =  P (Td > c) for any non-mated 

score Td, and is interpreted as the probability that a non-mated score will be declared a 
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“match” by chance. Similarly, the RNMP is defined as RNMP (c) =  P (Tp < c) for any 

mated score Tp, and is interpreted as the probability that a mated score will be declared a 

“non-match” by chance. 

The ROC  curve plots  a pair of points (FPR(c), TPR(c)), where c is the possible threshold, 

true positive rate TPR(c) = 1  − Fp(c) and false positive rate FPR(c) = 1  − Fd(c). The 

TPR(c) is also denoted as a survivor function TPR(c) =  P (Tp > c) and  FPR(c) is denoted 

as a survivor function FPR(c) =  P (Td > c). Therefore, in the forensic context the ROC 

curve plots 1 − RNMP (c) against RMP (c) for a variety of thresholds, c. Let  u be FPR(c), 

and let R(u) be  TPR(c), and R(u) is given  by  R(u) = 1  − Fp(Fd 
−1(1 − u)), where u is the 

false positive rate. 

The first derivative of the ROC curve has been shown to be closely related to likelihood 

ratio (Choi, 1998). Specifically, the tangent at a point, u, of the ROC curve is written as 

R (u) =  Fp(F
−1(1−u))/Fd(F

−1(1−u)). For a realized comparison score tx,y based on evidenced d 

F−1measurements, x and y, we write tx,y = d (1 − u). Since it follows that u = 1  − Fd(tx,y), 

we then have the mathematical relationship between the score-based likelihood ratio and 

the the tangent at a point u of the ROC curve SLR(tx,y) =  R (1 − Fd(tx,y)). This applies to 

comparison scores on a continuous scale, which is commonly the case in fingerprint matching. 

The SLR can be interpreted as the instantaneous change in the true positive rate in a unit 

change of 1 − Fd(tx,y). 

Estimating the Score-based Likelihood Ratio 

The relationship described provides a way to take advantage of both the LR-style and error 

rate-based approaches to forensic science, provided that the ROC curve can be estimated. 

Several methods of estimating ROC curves exist, including parametric, nonparametric and 

semiparametric methods. The parametric methods usually assume parametric distributions 

for diagnostic similarity scores and yield a smooth ROC curves. The nonparametric ROC 

methods do not have distribution at requirements. The semiparametric ROC methods could 
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generate smooth ROC curves without distribution assumptions for the similarity scores. We 

will use parametric methods of estimating the ROC curve for the purpose of deriving SLR 

values based on the ROC curve. Then, we will compare those approaches to a popular 

method of obtaining the SLR without the use of an ROC curve. 

Parametric ROC Curve Method. In a simple setting, after some monotone transfor-

mation, the mated and non-mated scores follow normal distributions Fp ∼ N(μp, σp 
2) and  

Fd ∼ N(μd, σd 
2), respectively. Since the mated scores are more likely to be larger than the 

non-mated scores, we have μp > μd. The resulting ROC curve is referred to as the binormal 

ROC method [13]. Normality of the original scores is checked through quantile-quantile 

plots for mated and non-mated groups, separately. If the normality assumption is invalid, 

Zou et al. [50] suggest that before estimating the normal parameters, the Box-Cox power 

transformation should be used to transform the original score using 

(Tp,i)
λ1 − 1 (Td,j )

λ1 − 1 
 λ1 (Tp,i) =  ,  λ1 (Td,j ) =  , (4)

λ1 λ1 

where λ1, λ2 are the parameters of Box-Cox transformation, λ1 = 0 and could be estimated by 

maximum likelihood estimator. It is worth noting that the monotone transformation should 

be the same for the two groups so that the underlying ROC curve remains unchanged. This 

is due to the transformation invariance of the ROC curve. For simplicity, we still use Tp,i and 

Td,j to denote the transformed normal scores. Without loss of generality, we assume that Tp,i 

has a larger mean than Td,j . Then, we have a parametric estimate (PE) of the FPR given 

by FPRPE  (c) = 1  − Φ((μ̂p − c)/σ̂p) and a parametric estimate (PE) of the TPR given by 

¯ ¯TPRPE  (c) = 1−Φ((μ̂d −c)/σ̂d) where the sample means, μ̂p = Tp and μ̂d = Td are estimators 

for the Normal population means and the sample standard deviations σ̂p = sp and σ̂d = sd 

are estimators for the Normal population standard deviations. The ROC curve is plotted 

for all possible values of c and is given by RPE  (u) = Φ(a+ bΦ−1(u)), where a = (μp − μd)/σp 
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and b = σd/σp. The first derivative of the ROC curve is given by 

bφ(a + bΦ−1(u))
(u) =  .RPE  φ(Φ−1(u))) 

This gives a function of the TPR, u, instead of a function of a score. For a score, tx,y, the  

associated TPR is given by u = P (T > tx,y|Hd), or the probability of having a score greater 

than the observed score tx,y when the defence hypothesis is true. Hanley and Hajian-Tilaki 

[18] recognize that 100 × (1 − u) is the percentile of tx,y in the non-mated scores. 

Percentiles are commonly used to standardize growth and lung function measurements for 

children and to standardize many laboratory measures. By substituting u with a placement 

value 1 − Φ((tx,y − μd)/σd), we have the SLR using a parametric estimate (PE) under the 

binormal model 

bφ(a + bΦ−1(1 − Φ((tx,y − μd)/σd))
SLRPE  (tx,y) =  . (5)

φ(Φ−1(1 − Φ((tx,y − μd)/σd)) 

It follows from the symmetry of the standard normal density that the numerator of (5) 

can be simplified to be bφ(a + bΦ−1(Φ((−tx,y + μd)/σd)), or bφ(μp/σp − tx,y/σp), and the 

denominator can be simplified to φ((μd − tx,y)/σd). The log SLRPE  at a score tx,y is then 

given by 

log SLRPE  (tx,y) = log  σd/σp + log  φ((μp − tx,y)/σp) − log φ((μd − tx,y)/σd). (6) 

The estimators for a and b are obtained by substituting the sample means, μ̂p = T̄  
p and 

μ̂d = T̄  
d and sample standard deviations, σ̂p = sp and σ̂d = sd for the true means and 

standard deviations: â = (μ̂p − μ̂d)/σ̂p and b̂ = σ̂d/σ̂p. Then, log SLRPE  (tx,y) is estimated 

by plugging in the corresponding estimates of mean and standard deviation. 

The estimated SLR needs the estimators for the mean and variances separately for both 

groups. Denote the parameter vector θ = (μp, σp, μd, σd)
T and its estimator θ̂ = (μ̂p, σ̂p, μ̂d, σ̂d)

T . 
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The first order Taylor expansion on the logarithm of the likelihood ratio is written as 

log SLRPE  (tx,y) = log  SLRPE  (tx,y) +  ∇T log SLRPE  (tx,y)(θ̂  − θ). 

where 

∂ log SLRPE  ∂ log SLRPE  ∂ log SLRPE  ∂ log SLRPE∇ log SLRPE  = (  , , , )T 

∂μp ∂σp ∂μd ∂σd 

and the explicit expression for ∇ log SLRPE  (tx,y) is given  by  

⎞⎛ T 

⎜⎜⎜⎜⎜⎜⎜⎝ 

φ ((μp − tx,y)/σp)/(σpφ((μp − tx,y)/σp)) 

−1/σp − (μp − tx,y)φ ((μp − tx,y)/σp)/(σp 
2φ((μp − tx,y)/σp))) 

−φ ((μd − tx,y)/σd)/(σpφ((μd − tx,y)/σd)) 

1/σd + (μd − tx,y)φ ((μd − tx,y)/σd)/((σp 
2φ((μd − tx,y)/σd))) 

⎟⎟⎟⎟⎟⎟⎟⎠ 

. 

The variance of log  SLRPE  (tx,y) is derived from the first order Taylor expansion on the 

parameter vector (or the multivariate delta method): 

var(log SLRPE  (tx,y)) = ∇T log SLRPE  (tx,y)cov(θ̂)∇ log SLRPE  (tx,y). (7) 

The variance and covariance elements in cov(θ̂) follow standard expressions. We have 

var(ˆ ) =  σ2/M , var(μ̂d) =  σ2/N . With the normal distributions, the variance formu-μp p d 

las are simplified to var(σ̂2) = 2σ4/(M − 1) and var(σ̂2) = 2σ4/(N − 1). The delta method p p d d 

gives the variance expressions for sample standard deviation: var(σ̂p) = 1/(4σp 
2)var(σ2) =  

σp 
2/(2(M − 1)), and var(σ̂d) =  σd 

2/(2(N − 1)). With these expressions, the covariance matrix 
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of θ̂  is ⎞⎛ 

cov(θ̂) =  

⎜⎜⎜⎜⎜⎜⎜⎝ 

σp 
2/M 0 0 0 

0 σp 
4/2(M − 1) 0 0 

0 0 σd 
2/N 0 

0 0 0 σd 
4/2(N − 1)

⎟⎟⎟⎟⎟⎟⎟⎠ 

Facial Recognition Example 

We use a facial recognition data set, and apply PE, logistic regression estimation (LRE) and 

kernel density estimation (KDE) to investigate the variance, repeatability, and reproducibil-

ity of these methods. The biometric images were frontal face images taken with a digital 

single-lense reflex camera. The similarity scores were extracted from the picture comparison, 

and used in our study as the score. The data set has three categories, which are “good,” 

“bad,” and “ugly,” based on the quality of the images [35]. We only consider the category 

“good” in our study. The comparison scores represent measurement of the characteristic 

difference, and a smaller distance indicates higher similarity. So a low score represent a 

pair of pictures with high similarity. Then, a genuine comparison score is measured by 

comparing two pictures of the same individual, and is generally a smaller value than an 

imposter score, which is measured by comparing pictures of different people. Scores in both 

groups have extremely large outliers, so we remove all the outlier samples before applying 

the methods. 

We randomly select 2000 samples from the genuine group, and various numbers of samples 

from imposter group to vary the log sample size ratios of data from -2 to 2 by the increment 

of 0.1. We use this as training data for both PE, LRE, and KDE. Then, we calculate the 

LLR at the score of 25 for all the three methods. For LRE and KDE, we repeat the random 

selection 1000 times to get the empirical variances and then generate 95% confidence intervals 

based on the variances. For PE, we use our variance estimate approach given in Equation 

(7) to get the estimator and also the 95% confidence interval. 
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Figure 2 shows the LLR values for the PE, KDE, and LRE methods when the sample size 

ratio varies. We see that both PE and KDE have good repeatability since they are not 

sensitive to varying sample size ratios. This is similar to our simulation findings which also 

show good repeatability of the PE and KDE methods. The repeatability of the LRE method 

is unsatisfactory because the LLR from the method takes on a wide range of values. For 

reproducibility, the PE method generates larger LLR values than the KDE method. The 

LLR from the PE and KDE methods takes on all positive values, while the LLR from the 

LRE method takes on both positive and negative values. If one uses zero as a decision 

threshold to decide whether the score 25 comes from Hp or Hd, both PE and KDE can 

arrive at the same conclusion that the score of 25 likely supports Hp with all positive LLR 

values. With LLR value ranging from negative values to positive values, the decision by 

LRE depends on the sample size ratio. When the sample size ratio is as small as -2, the 

LRE concludes that the score of 25 supports Hd, and with the log ratio is as large as 2, the 

LRE supports Hp instead. 

Figure 2 also shows the confidence interval of LLR values for the PE, KDE, and LRE methods 

when the sample size ratio varies. Note that the confidence interval is increasing as the log 

sample size ratio increases. That is because we fixed the sample size of mated group and vary 

numbers of samples in non-mated group to increase the log sample size ratios of data from 

-2 to 2 by the increment of 0.1, so the total sample size is decreasing. Since the confidence 

interval is dependent on sample size, this explains why the confidence intervals become wider 

as sampling ratio increases. 

Table 2 gives the ranges of the confidence intervals along with the variance of the LLR for 

the PE, LRE, and KDE methods applied to facial recognition data. We only select three 

typical log sampling ratio for each method from the pool, which are -1.0, 0, and 1.0, and 

list the estimated LLR (LLR), the estimated lower bound (LB) and upper bound (UB) of  

the confidence intervals, and the variance of the estimated LLR (V ar(LLR)). Note that the 
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variance and the width of the confidence interval of PE and LRE are similar. The KDE 

method has the largest variance among all methods. All of the estimated LLR values and 

confidence intervals are positive except for one LRE result when log sampling ratio is -1.0, 

which implies that for this situation we will conclude that the score belongs to a group 

different from other decisions which were made with same score but different methods or 

different log sampling ratios. Therefore, the LRE method is less reliable than the PE and 

KDE methods. 

Figure 2: Confidence interval of estimated LLR in facial recognition data using PE, LRE, 
and KDE. 

Table 2: Ranges of the confidence interval for different methods in facial recognition data 

Method Log Sampling Ratio LLR LB UB  V ar(LLR) 

PE -1.0 1.744 1.538 1.951 0.01113 
0.0 1.920 1.623 2.217 0.02294 
1.0 1.713 1.295 2.131 0.04548 

LRE -1.0 -0.211 -0.424 0.002 0.01180 
0.0 0.980 0.665 1.296 0.02597 
1.0 1.777 1.414 2.141 0.03441 

KDE -1.0 0.973 0.629 1.316 0.03067 
0.0 0.721 0.268 1.173 0.05335 
1.0 0.847 0.232 1.462 0.09855 

Fingerprint Matching Example 
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We also apply the PE, LRE, and KDE methods to a set of fingerprint comparison scores 

to study their reproducibility and repeatability for fingerprints. The genuine and impostor 

comparison scores were generated by applying a fingerprint comparison algorithm using 

NIST Biometric Image Software to National Institute of Standards and Technology Special 

Database 4. Genuine scores were obtained by comparing two patches of the same rolled print 

of the same finger, and imposter scores were obtained by comparing patches of rolled prints 

from two different fingers. 

The patch sizes are 128 by 128, 192 by 192 or 256 by 256. The neighboring patches with the 

same x-coordinate are shifted by the half of the patch width. This way, half of the area in 

the neighboring patches are overlapped. For the patches of 128 by 128, the patch starts at 

the coordinate (1,1), and the next patch starts at (1,65). Every patch has the same size of 

128 by 128. The comparison scores, the numbers of matching minutiae, and the distance to 

the singularity point are recorded. The average and the standard deviation of all comparison 

scores are computed. 

The scores in the genuine group are generally greater than the score in the imposter group. 

The sample means and sample standard deviations are 350.9 and 293.6 for the genuine group, 

and 7.5 and 2.5 for the imposter group. In our computation of the LLR values using all three 

methods, we randomly select 4000 genuine scores and various numbers of imposter scores, so 

that the log sample size ratio ranges from -2 to 2 by the increment of 0.1. When the sample 

size ratio changes, we repeat the sampling procedure to select genuine and imposter scores 

before the LLR methods are applied. 

To get the empirical variances and the 95% confidence intervals for the LRE and KDE 

methods, 1000 iterations are adopted for each log sampling ratio value. For the PE method, 

our variance estimate approach given by Equation (7) was used to get the estimated variance 

and the 95% confidence interval. We estimate the LLR at the score of 10 with all the LRE and 

KDE methods. Note that the PE method assumes that the data are normally distributed. 
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Since the fingerprint scores data do not follow normal distributions, we use the Box-Cox 

power transformation given in Equation (4) to obtain the normality for both groups. We 

use a λ to transform both mated and non-mated data which is equal to the average of λ 

estimated from both groups separately. We also use the same λ value to transform the score 

10. 

Figure 3 shows the LLR values for the PE, KDE, and LRE methods when the sample size 

ratio varies. In terms of the repeatability, the LLR values from the PE and KDE methods 

have small fluctuations when the sample size ratio varies. However, the LLR values from 

these two methods differ by approximately 1. All the LLR values from these three methods 

are negative. If one uses zero as a decision threshold to decide whether the score 10 comes 

from Hp or Hd, all three methods should arrive at the same conclusion that the score of 10 

likely supports Hd with all negative LLR values. Again, the LLR values from LRE have 

a linear relationship with the log sample size ratio, and thus, the repeatability of the LRE 

method is unsatisfactory. The LLR values from the KDE and PE methods are similar, 

indicating reproducibility between the two methods is high. 

Figure 3: Confidence interval of estimated LLR in fingerprint identification data using PE, 
LRE, and KDE. 
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Table 3: Ranges of the confidence interval for different methods in fingerprint identification 
data 

Method Log Sampling Ratio LLR LB UB  V ar(LLR) 

PE -1.0 -3.453 -3.552 -3.354 0.002556 
0.0 -3.369 -3.471 -3.226 0.002742 
1.0 -3.429 -3.550 -3.307 0.003849 

LRE -1.0 -3.786 -3.953 -3.618 0.007291 
0.0 -2.731 -2.913 -2.548 0.008708 
1.0 -1.875 -2.067 -1.682 0.009629 

KDE -1.0 -3.788 -3.863 -3.712 0.001476 
0.0 -3.554 -3.668 -3.440 0.003372 
1.0 -3.588 -3.747 -3.429 0.006574 

4.2.3 Research Question 3: Uncertainty Quantification 

The uncertainty quantification of the SLR is explored through a simulation study using a 

variety of models for  the data.  

Binormal Data The datasets are generated using functions in R. Let Sp and Sd denote 

similarity scores simulated under the matching and non-matching groups, respectively, where 

Sp ∼ N(20, 9) and Sd ∼ N(10, 25). Then, we investigate the impact of the sample size ratio 

on the logarithm of the score-based likelihood ratio (LLR) values for a particular comparison 

score. We chose the score s0, as the score at which the true genuine (matching) and impostor 

(non-matching) probability density functions intersect. The true value of the logarithm of 

the score-based likelihood ratio at s0 is zero (the ratio of the two probabilities is 1 and so the 

LLR is zero). We then estimate the LLR values at s0 as the sample size ratio varies. 

Let M and N represent the sample sizes of genuine group and imposter group, respectively. 

To examine the variance, fix the total sample size to be M + N = 10000, and vary the log 

sampling ratio log(M/N) from -2 to 2 by 0.1, so we used  41  pairs of (M, N). For each pair 

of sample sizes, we simulate 1000 sets of simulated scores, and we denote the true variance 

(V ar(LLR)) as the variance of the 1000 LLR. The estimated variance (V ar(LLR)) is given 

by Equation (7). 
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Next, the coverage is the percentage of the 1000 LLR covered by the 95% confidence interval 

which is: 

0 +  Z0.95 × V ar(LLR), 0 − Z0.95 × V ar(LLR)) 

since the true LLR for s0 is 0. The resulting variances and coverages for the simulated data 

are given in Figure 4 below. 
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(right). 

True variance and estimated variance (left) and Confidence interval coverage 

As seen in Figure 4 (left), the estimated variance agrees well with the true variance. Both 

of them reach their minimum with log sampling ratio equal to around 0.5. Moreover, it 

is shown in the Figure 4 (right), the confidence interval coverage varies about 95% with 

amplitude of 1%. 

Other Data Types The data sets are generated using functions in R [37]. We compare 

PE, KDE and LRE in three simulation studies with different distributions for genuine and 

imposter groups. The data sets from each group follow different distributions described in 

Table 4. The distributions and parameters in each study are obtained from real data sets [16]. 
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10000 data for each group is generated for each set up, and we randomly select data set from 

the total data based on the sample size (M, N). After this, we repeat the random selection 

step 1000 times, and calculate the empirical coverage. That is, we generate the confidence 

interval based on the variance, and check if the estimated LLR from the 1000 iterations falls 

within the confidence interval. We find the value of s0 for each set up, which is the score for 

the true genuine and impostor probability density functions cross. The true value of LLR at 

s0 is zero and the confidence interval is given by 

0 +  Z0.95 × V ar(LLR), 0 − Z0.95 × V ar(LLR)) 

since the true LLR in s0 is 0. The Bias in the table is given as 

Bias SLR = |SLR − SLR| = |1 − SLR|. 

We use SLR here (instead of the logarithm of the SLR) because the difference of the LLR 

values will give us very small numbers and is also hard to interpret. 

Table 4: Distributions and parameters in the three simulation studies 

Study fp(sx,y) fd(sx,y) 
Distribution Parameters Distribution Parameters 

1 Normal Mean = 20 
Variance = 9 

Normal Mean = 10 
Variance = 25 

2 Uniform Min = 0 
Max = 1 

Beta shape1 = 0.8  
shape2 = 17  

3 Normal mean = 2 
variance = 4 

t Degrees of 
Freedom = 2 

Figure 5 displays the bias and coverage estimation using the PE, KDE, and LRE methods. 

For the results of the PE method applied to the binormal dataset, the bias is small and 

the coverage is close to 95%. But when the data are not from normal distributions, the 

bias increases and the coverage is far different from 95%. This makes sense since the PE 

method relies on the distributional assumption. The results of the LRE method are heavily 
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Figure 5: Bias and Confidence Interval Coverage with PE, KDE, and LRE method. 
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influenced by the sample size. Note that when we increase the difference between np and 

nd, the bias of the LRE method increases and the coverage of LRE decreases dramatically. 

Overall, when the sample size difference is larger than 100, the coverage is no more than 

30%. The KDE method produces small biases and the coverage is close to 95% through all 

the settings. Generally, when the sample size gets larger, the bias becomes smaller and the 

coverage gets closer to 95%. 

4.2.4 Research Question 4: Visualization 

One visual solution we explored in the project is developed from the relationship between 

the ROC curve for the Two-Stage approach and the likelihood ratio (LR). The derivative 

of the ROC curve is shown to be closely related to likelihood ratio [6]. Specifically, the 

LR is interpreted as the instantaneous change in the 1-RNMP in a unit change of RMP. An 

illustration of the relationship between ROC and LR is given in Figure 6 for simulated scores 

from normal distributions. 
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Figure 6: Left panel: dash curve– normal density of different-source scores, solid curve– 
normal density of same-source scores; right panel: solid black curve – ROC curve, the slope 
of the red line is likelihood ratio at the false match rate (or RMP)=0.2181 

Additionally, the figures in Sections 4.2.1-4.2.3 illustrate the visualization tools for uncer-

tainties associated with error rates and likelihood ratios. 

4.3 Impact 

The project has implications in shifting forensic practice paradigms in several important 

ways. First, formalizing source and sub-source propositions builds the foundation for forensic 
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evidence interpretation. Second, the proposed paradigm based on error rates involves the 

interpretation of forensic evidence in a similarity stage and an exclusion stage. The paradigm 

is more intuitive for forensic scientists to understand than giving one single number based on 

likelihood ratio. Interpreting the forensic evidence in separate stages also provides the jury 

more information than the likelihood ratio. Finally, a set of visualization tools developed 

in the project present forensic examiners intuitive statistical graphics about the uncertainty 

associated with error rate based methods for quantifying evidence. 

The work performed for this project has supported the Federal Bureau of Investigation 

Laboratory Division on research projects related to the interpretation of forensic evidence 

from handwriting and improvised explosive devices. The work performed has also supported 

National Institute of Standards and Technology on research projects related to accuracy 

evaluation of biometrics algorithms. 

5 Artifacts 

5.1 List of Products 

1. Zhang, W, Tang, LL, Li, Q, Liu, A, Lee, M-LT. Order-restricted inference for clustered 

ROC data with application to fingerprint matching accuracy. Biometrics. 2020; 76: 

863– 873. https://doi.org/10.1111/biom.13177 

2. Larry Tang, Xiaochen Zhu, Ty Nguyen, Danica M. Ommen, Elham Tabassi. 

Score-based Likelihood Ratios based on ROC Curve Analysis and the Variabilities of 

the Likelihood Ratios, submitted to Science and Justice. 

3. Dr. Larry Tang and his student Mengling He developed a Shiny app for evaluat-

ing the error rates and providing the variability of the error rates. The link to the 

Shiny app is https://forensicaccuracy.shinyapps.io/order_constrained_ROC_ 

calculation/. 

4. The R codes and the datasets are provided at: https://sites.google.com/view/ 

larrytang/software?authuser=0 
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5.2 Data Sets Generated 

None. 

5.3 Dissemination Activities 

Conference Presentations 

Feb 2019 - Drs. Chris Saunders and Danica Ommen presented “On the Development of 

Score Rules for the Pairwise Sample Comparison of Particle Micromorphometry of Alu-

minum (Al) Powders” at the 2019 American Academy of Forensic Sciences Conference. 

Sept 2019 - Dr. Danica Ommen presented “Which Forensic Likelihood Ratio Approach is 

Better?” at the 10th International Workshop on Simulation and Statistics. 

Sept 2019 - Dr. Chris Saunders presented (with Dr. Danica Ommen as coauthor) “The 

Incorporation of U-processes for Bayesian Approaches to Pattern Recognition with 

Application to Forensic Source Identification” at the 10th International Workshop on 

Simulation and Statistics. 

Sept 2019 - Dr. Larry Tang presented (with Dr. Danica Ommen as coauthor) “The Con-

fidence Interval for the Likelihood Ratio with Application to Biometrics” at the 10th 

International Workshop on Simulation and Statistics. 

Sept 2019 - Ms. Cami Fuglsby presented (with Drs. Chris Saunders and Danica Ommen 

as coauthors) the poster “A Class of Score Functions for the Analysis of Kinematic 

Handwriting Data” at the 10th International Workshop on Simulation and Statistics. 

Feb 2020 - Ms. Cami Fuglsby presented (with Drs. Chris Saunders and Danica Ommen 

as coauthors) “The Interaction of Writing Profiles and Automated Scoring Rules” at 

the 2020 American Academy of Forensic Sciences Conference. 

Mar 2020 - Dr. Xiaochen Zhu presented (with Dr. Larry Tang as coauthor) “ROC 

Methodology For Estimating Source-matching Likelihood Ratios and Evaluating De-

mographic Effects” at the Pittcon 2020 conference. 
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Aug 2020 - Dr. Danica Ommen presented (with Drs. Larry Tang and Christopher Saun-

ders as coauthors) “A Method of Forensic Evidence Interpretation Using Error Rates” 

at the Joint Statistical Meetings . 

Dec 2020 - Dr. Danica Ommen presented (with Drs. Larry Tang and Christopher Saun-

ders as coauthors) “A Method of Forensic Evidence Interpretation Using Error Rates” 

at the International Chinese Statistical Association (ICSA) Applied Statistics Sympo-

sium. 

Dec 2020 - Dr. Chris Saunders presented (with Dr. Danica Ommen as coauthor) “Bayesian 

Characterizations Of U-processes Used In Pattern Recognition With Application To 

Forensic Source Identification” at the International Chinese Statistical Association 

(ICSA) Applied Statistics Symposium. 

Dec 2020 - Dr. Xiaochen Zhu presented (with Dr. Larry Tang as coauthor) “Order-

Constrained ROC Regression with Application to Facial Recognition” at the Interna-

tional Chinese Statistical Association (ICSA) Applied Statistics Symposium. 

Seminars/Workshops 

Jan 2019 - Dr. Chris Saunders organized an invited session “Forensic Statistics” for the 

10th International Workshop on Simulation and Statistics in Salzburg, Austria. 

Feb 2019 - Dr. Larry Tang presented “Order-Restricted Inference for Evaluating Error 

Rates with Application to Fingerprint Matching” in the Department of Biostatistics, 

Bioinformatics & Biomathematics at Georgetown University. 

Mar 2019 - Dr. Larry Tang presented “Order-Restricted Inference for Evaluating Error 

Rates with Application to Fingerprint Matching” in the Department of Statistics at 

University of Central Florida. 

Sept 2019 - Dr. Tang gave a tutorial titled “Estimation of Soft-biometrics from finger-

prints” at 10th IEEE International Conference on Biometrics: Theory, Applications 
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and Systems (BTAS) 

Dec 2019 - Dr. Larry Tang organized an invited session “Current advances in forensic 

statistics” for the International Chinese Statistical Association (ICSA) Applied Statis-

tics Symposium. 

Jan 2021 - Dr. Chris Saunders organized a topic contributed session “Bias and Inter-

pretability in Biometrics for Forensic Science” for the 2021 Joint Statistical Meetings 

2021. 
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	1 Project Summary 
	1.1 Major Goals and Objectives 
	During this one and a half years’ foundation research project, we aimed to relate matching probabilities to the error rates arising in common individuality studies and propose a paradigm for evidence interpretation based on error rate studies. In this research program we worked within the classical paradigm for evidence interpretation based on conditional match probabilities. 
	-

	For many researchers, a number of recent recommendations concerning the use of error rates in forensic science have shifted the focus of forensic evidence interpretation away from the formal subjective Bayesian approach long advocated by the research community. Some of the concerns related to error rates of forensic science methods are mentioned in the Congressionally mandated 2009 National Academy of Science (NAS) report entitled “Strengthening Forensic Science in the United States: A Path Forward” [29], t
	-
	1 
	-
	-

	requirements 
	1
	https://nij.ojp.gov/library/publications/forensic-science-technology-working-group-operational
	-

	source identiﬁcation problem. 
	1.2 Research Questions 
	To achieve our main objective, we set out to explore four main research questions: 
	1. 
	1. 
	1. 
	What are the formal sampling and statistical experiments for source and sub-source propositions for questioned document, ﬁngerprints, and facial recognition evidence? 

	2. 
	2. 
	Can a paradigm for reasoning about the source of traces based only on error rates used to characterize the performance of automated identiﬁcation systems be proposed? 

	3. 
	3. 
	Can a set of methods for characterizing the uncertainty about estimated error rates be developed? 

	4. 
	4. 
	How can the results for the uncertainty associated with error rate based methods for quantifying evidence best be presented? 


	1.3 Research Design & Methods 
	1.3.1 Research Question 1: Formalize Sampling Models 
	The forensic identiﬁcation of source problem is an inferential analysis to support answering the question of where a collection of forensic evidence originated. (It should be noted that we use the term “identiﬁcation” in this context to mean something less strong than is typically considered an “identiﬁcation” in forensic science, i.e. the source of bullet is this gun, to the exclusion of all other guns.) The point of origin may be a person, as is the case for DNA and handwriting evidence, or a speciﬁc obje
	The forensic identiﬁcation of source problem is an inferential analysis to support answering the question of where a collection of forensic evidence originated. (It should be noted that we use the term “identiﬁcation” in this context to mean something less strong than is typically considered an “identiﬁcation” in forensic science, i.e. the source of bullet is this gun, to the exclusion of all other guns.) The point of origin may be a person, as is the case for DNA and handwriting evidence, or a speciﬁc obje
	-

	concerned with oﬀense level propositions concerning the guilt or innocence of the defendant (for a detailed description of the hierarchy of propositions, see [7, 22, 11]). The focus of this research project is on a particular class of source-level identiﬁcation problems. 

	In the identiﬁcation of source problems, it is often of interest to determine whether a suspect can be linked to the evidence found at the scene of the crime. In a sense, this type of identiﬁcation of the source problem is deﬁned relative to a speciﬁed source population, and referred to as the identiﬁcation of the speciﬁc source problem [32]. In this research project, we consider sources to be deﬁned as generators or creators of the objects of interest (for example, a person is a generator of DNA and handwr
	es: Set of objects associated with or generated by a speciﬁed source (denote the number of objects by ns) 
	ea: Collection of sets of objects each associated with a source of traces in an alternative source population (denote the number of sources by na) 
	eu: A set of trace objects that are all from the same unknown source (denote the number of trace objects by nu) 
	We are then tasked with summarizing and presenting the evidence in es, ea,and eu so that a decision maker can decide between two propositions for how the evidence has arisen. The two propositions can be stated as: 
	Hp: The unknown source evidence eu and the speciﬁc source evidence es both originate from the speciﬁc source; 
	Hd: The unknown source evidence eu does not originate from the speciﬁc source, but from some other source in the alternative source population. 
	Following Ommen and Saunders [32], the two competing propositions imply two competing 
	statistical sampling models for deﬁning the source of the trace evidence. These two models are expressed in the context of sampling models below. 
	M: The traces in eu are a simple random sample from the population of traces associated with the speciﬁed source 
	1

	M: The traces in eu are a simple random sample from a randomly selected source in the alternative source population of sources. 
	2

	For the identiﬁcation of speciﬁc source problem, the ﬁrst model implies that eu has been generated according to the model for the speciﬁc source, implying that there are ns+nu traces from the speciﬁc source. In contrast, the second model implies that eu has been generated according to the model for the alternative source population, implying that there are na +1 sources sampled from the background population. In this project, the investigators will build on these propositions, and formalize the underlying s
	A common quantiﬁcation of the weight of evidence for one proposition over another is the Bayesian likelihood ratio (LR) [23, 12, 24]. This approach is based on the theory that the examiner should report their relative belief concerning how reasonable it is to observe the evidence under two competing propositions for how the evidence has arisen. This statistic is commonly known as the Bayes Factor, or what is often referred to as the likelihood ratio in the ﬁeld of forensic science. Once the Bayes Factor has
	[38] for an overview.) This approach to reasoning about evidence has been demonstrated to 
	[38] for an overview.) This approach to reasoning about evidence has been demonstrated to 
	be exceptionally powerful in evaluating and interpreting forensic evidence for simple DNA and the analytical measures concerning certain types of trace evidence. However, it is unclear how to deﬁne an error rate under this paradigm, since all probabilities are personal, and therefore dependent on a variety of factors external to the case at hand. 

	1.3.2 Research Question 2: Evidence Interpretation via Error Rates 
	The two-stage approach is the predominant approach to evidence interpretation in the United States and was developed by [21]. As the name suggests, it is based on two steps or stages. The ﬁrst step considers whether the speciﬁc (sometimes called “putative”) source can be excluded as the actual source of the trace evidence. If the putative source cannot be excluded in the ﬁrst step, the examiner is then expected to make an assessment concerning how many alternative sources (in some relevant population) can b
	To interpret the value of evidence using the two-stage approach, the examiner must ﬁrst deﬁne a scoring rule for comparing control samples from a known source (denoted by es)to a trace with an unknown source (denoted by eu), say C(eu,es). This scoring rule basically establishes a criteria for assessing the similarity of two sets of characteristics. Following Parker [34], assume that C(·,·) is a dissimilarity score, i.e. the bigger the value of C(·,·)the less similar eu and es are. If the value of the compar
	To interpret the value of evidence using the two-stage approach, the examiner must ﬁrst deﬁne a scoring rule for comparing control samples from a known source (denoted by es)to a trace with an unknown source (denoted by eu), say C(eu,es). This scoring rule basically establishes a criteria for assessing the similarity of two sets of characteristics. Following Parker [34], assume that C(·,·) is a dissimilarity score, i.e. the bigger the value of C(·,·)the less similar eu and es are. If the value of the compar
	have the same amount of detail or information concerning their respective source(s). This can be illustrated by latent print examination, where the control print is a full-rolled print taken under controlled conditions and the latent (or recovered print) is a partial, incomplete print with less information. The comparison method C(·, ·) will need to account for this diﬀering amount of information and/or complexity. 

	There are several methods of deﬁning the scoring rule or the comparison metric. One popular method, especially for pattern and impression evidence like ﬁngerprints, is to use an automated identiﬁcation system to compute the score. Generally speaking, automated identiﬁcation systems are designed to input a trace, compare it to a ﬁnite list of candidate sources, and output a ranking of which source is most likely to have generated the trace sample. Most of the algorithms for comparing the evidential items are
	-
	-
	-

	For the ﬁrst stage, if the examiner cannot exclude the trace as having arisen from source of the known control samples, then the examiner will state an association exists between the controls and the trace (e.g., “match,” “cannot exclude the source as the actual source of the traces,” “analytically indistinguishable in all measured properties,” etc.), and will proceed to the second stage. For the second stage, the examiner will need to present some measure of the strength of the association. There are vario
	For the ﬁrst stage, if the examiner cannot exclude the trace as having arisen from source of the known control samples, then the examiner will state an association exists between the controls and the trace (e.g., “match,” “cannot exclude the source as the actual source of the traces,” “analytically indistinguishable in all measured properties,” etc.), and will proceed to the second stage. For the second stage, the examiner will need to present some measure of the strength of the association. There are vario
	by the comparison methodology, then a false match error has occurred, and the probability of this type of error is the random match probability (RMP). Similarly, when two samples provided by the same source are declared a “non-match”, then a false non-match error has occurred, and the probability of this error is the random non-match probability (RNMP). These RMPs and RNMPs are typically unknown quantities, and often need to be estimated from collected data (a recent MS thesis by Fuglsby [14] from SDSU pres

	The ﬁrst approach is to estimate of the probability of observing a randomly selected set of control samples from a randomly selected source (in some relevant population of sources) that is suﬃciently similar to the trace samples that we would conclude a “match”. This approach is referred to as the trace-anchored approach. Then, the error rate of interest is the rate at which we would not exclude sources in the relevant background population, with samples collected in a manner similar to es, when compared to
	1 
	n
	a 

	rmp(eu,ea)= IC(eu,ea) <τ , na 
	1
	i 

	i=1 
	where eadenotes a set of control samples from the ialternative source. Smaller values of this error rate correspond to stronger evidence for associating the trace to the known source. 
	i 
	th 

	The second approach is to estimate the probability of observing a randomly selected set of pseudo-trace samples under similar conditions to those under which eu was generated, from a randomly selected source (in some relevant population of sources), that is suﬃciently similar to the speciﬁc source’s control samples that we would conclude a “match”. Pseudo-traces are control samples which mimic the same level of quality and detail to the observed trace 
	The second approach is to estimate the probability of observing a randomly selected set of pseudo-trace samples under similar conditions to those under which eu was generated, from a randomly selected source (in some relevant population of sources), that is suﬃciently similar to the speciﬁc source’s control samples that we would conclude a “match”. Pseudo-traces are control samples which mimic the same level of quality and detail to the observed trace 
	samples. This approach is referred to as the source-anchored approach. Now, the error rate of interest is the rate at which we would not exclude pseudo-traces from sources in the alternative source population diﬀerent from the speciﬁc source when compared to the observed samples from the speciﬁc source. This error rate can be estimated by 

	1 
	n
	a 

	rmp(eu,ea)= IC es,e<τ , na 
	2
	u
	i 

	i=1 
	where edenote a pseudo-trace generated from the ialternative source. Again, smaller values of this error rate correspond to stronger evidence for associating the trace to the known source. 
	u
	i 
	th 

	The third, and ﬁnal, approach is to estimate the probability of observing a “match” when comparing a randomly selected set of pseudo-trace samples, under similar conditions that eu was generated, from a randomly selected source with control samples from another randomly selected source. This approach is commonly referred to as the general match approach. The error rate of interest here is the rate at which we would not exclude traces (similar to eu) from one source when compared to control samples (collecte
	1 
	n
	a 

	rmp(eu,ea)= IC ea,e <τ, 
	3
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	na (na − 1) 
	u
	j 

	i=1 j=i 
	where eadenotes a set of control samples and edenotes the pseudo-trace from the ialternative source. Note that neither the control samples from the speciﬁc source, es,orthe traces with an unknown source, eu, have been used in deﬁning this error rate. Yet again, smaller values of this error rate correspond to stronger evidence for associating the trace to the known source. 
	i 
	u
	i 
	th 

	Now that all the relevant forensic error rates have been deﬁned, we need to ﬁgure out a good way of presenting them to a fact-ﬁnder. The receiver operating characteristic (ROC) 
	curve, which is commonly used in medical diagnostic studies and biometric system evaluation studies, is a plot of the true positive rate (TPR) (i.e. probability of identifying a case when the subject is truly diseased) versus false positive rate (FPR) (i.e. probability of identifying a case when the subject is not diseased) at diﬀerent possible thresholds. The ROC curve is widely used in radiology, psychophysical and medical imaging research for detection performance, military monitoring, and industrial qua
	1.3.3 Research Question 3: Uncertainty Quantiﬁcation 
	Given its obvious importance, there has been an ongoing debate about how to properly express the forensic value of evidence [28]. Some advocate for the use of a single number (for example [41]), while others advocate for some sort of interval quantiﬁcation that would provide the decision-maker with an idea of the uncertainty in the analysis (for example 
	[19] and [40]). Many other researchers have provided their opinions on how to deal with uncertainty when quantifying the value of evidence, particularly in a special edition of Science and Justice [45, 4, 5, 8, 9, 26, 33, 42]. In keeping with this theme, we propose to quantify the uncertainty associated with an SLR system by providing a measure of the variability of the SLRs, see Section 4.2.3 for details. 
	1.3.4 Research Question 4: Visualization 
	Recently, there have been a handful of studies performed to determine how lay-persons (like jurors) perceive numerical and statistical results [43]. In an eﬀort to increase lay-persons’ understanding of the strength of forensic evidence, the European Network of Forensic Science Institutes (ENFSI) has recommended the use of a verbal equivalent scale for interpreting the 
	Recently, there have been a handful of studies performed to determine how lay-persons (like jurors) perceive numerical and statistical results [43]. In an eﬀort to increase lay-persons’ understanding of the strength of forensic evidence, the European Network of Forensic Science Institutes (ENFSI) has recommended the use of a verbal equivalent scale for interpreting the 
	results of likelihood ratios (or Bayes Factors) [11]. The ENFSI likelihood ratio (Bayes Factor) verbal equivalent scale is in seven ordered categories ranging from “no support” to “extremely strong support” of one proposition over the other proposition. However, these likelihood ratio scales are most useful in the Bayesian paradigm, and are not designed to work within the Two-Stage process. Conclusion scales more closely aligned with the Two-Stage approach are not new; forensic document examiners use a 9-po

	As an alternative to these scales, graphics and visualizations are often an eﬀective and eﬃcient way to communicate statistical results to both experts and lay audiences. In this project, we propose to develop visualization methods for ROC curves and forensic error rates, see Section 4.2.4 for details. We will explore the use of interactive graphics, small multiple charts, and the use of additional graphical features (e.g. color, shading) to link these methods in an intuitive manner. ROC curve visualization
	-

	1.4 Expected Applicability 
	The 2009 NAS report and 2016 PCAST report state some forensic science disciplines are supported by little rigorous systematic research to validate the discipline’s basic premises and techniques and more federal funding is needed to support research in universities and private laboratories committed to such work [29]. The statistical objectives outlined in this project are at the center of investigations into the role of statistics in the evaluation of evidence. These objectives hold great potential for addr
	The 2009 NAS report and 2016 PCAST report state some forensic science disciplines are supported by little rigorous systematic research to validate the discipline’s basic premises and techniques and more federal funding is needed to support research in universities and private laboratories committed to such work [29]. The statistical objectives outlined in this project are at the center of investigations into the role of statistics in the evaluation of evidence. These objectives hold great potential for addr
	2009 NAS report and 2016 PCAST report. The successful completion of the goals proposed in this project will shift forensic practice paradigms in several important ways. First, formalizing source and sub-source propositions will build the foundation for forensic evidence interpretation. Second, the proposed paradigm based on error rates involves the interpretation of forensic evidence in an exclusion stage and an atypicality stage. The proposed paradigm will be more intuitive for forensic scientists to under
	-
	-
	-
	https://sites.google.com/view/larrytang/software?authuser
	https://forensicaccuracy.shinyapps.io/order_constrained_ROC
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	Dr. Susan Vanderplas (University of Nebraska, Lincoln): Dr. Susan Vanderplas spent several years working in industry as a data scientist. Her dissertation research focused on visualization of large data sets, statistical computing, and the perception of statistical graphics. She was responsible for researching and developing methods of graphical 
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	Dr. Donald Gantz (George Mason University): Dr. Gantz has had many years of successful research in applications to forensic science of pairwise methods of algorithmic data analysis and statistical modeling. He has lectured and published concerning the data analysis and statistical concepts that underpin this research project. Together with statistics professors, postdocs and graduate students in the forensics research group at George Mason founded by Dr. Gantz in 2006, they have published and presented thei
	Ms. Elham Tabassi (National Institute of Standards and Technology): Ms. Tabassi’s research area is machine leaning, computer vision and pattern recognition with application in biometrics in general and friction ridge pattern recognition in particular. She is the principal architect of NIST Fingerprint Image Quality (NFIQ) which has become the defacto standard for measuring ﬁngerprint image quality and is currently deployed in some of US Government and EU biometric applications. Her background was important 
	-

	Unfunded Graduate Students: Ph.D. students whose research was related to this funded project 
	• 
	• 
	• 
	Ms. Cami Fuglsby (South Dakota State University): advised by Dr. Saunders 

	• 
	• 
	Dr. Xiaochen Zhu (George Mason University): advised by Dr. Larry Tang 

	• 
	• 
	Ms. Mengling He (University of Central Florida): advised by Dr. Larry Tang 


	3 Changes and Justiﬁcation 
	One of the investigators, Dr. John Miller, retired from George Mason University in 2019 and was unable to contribute to the project. Dr. Miller was initially budgeted for implementing the likelihood ratio approach on ﬁngerprint matching scores. This planned activity was carried out by other investigators on the project, Dr. Larry Tang and Dr. Danica Ommen. No replacement personnel were requested for the project. The budgets for the project awards were reallocated to Dr. Larry Tang and Dr. Danica Ommen due t
	One of the PIs, Dr. Tang, left George Mason University and started his new position at University of Central Florida starting Aug. 12, 2019. The grant was transferred from George Mason University to University of Central Florida. The grant was successfully transferred in November of 2020 and the corresponding sub-awards were successfully set up in December. Due to the change of institution of Dr. Tang, the PIs have spent considerable time reorganizing the grant research and reassessing the current capabilit
	-
	-

	Dr. Saunders requested the change in the travel budget to support the international travel to the SimStat 2019 workshop in Salzburg, Austria. The request was approved. He chaired and organized an invited session on the research associated with this award. 
	4 Outcomes 
	4.1 Activities & Accomplishments 
	During the period of performance, the lead investigators (Tang, Ommen, Saunders) engaged in conference calls via Zoom every other week to update the other participants on research projects and to coordinate and conduct collaborative eﬀorts. Overall, this award resulted in the training of 2 graduate students in the interpretation of forensic evidence, including 1 PhD graduate and 1 MS graduate. This award directly resulted in 1 PhD dissertation, 1 
	During the period of performance, the lead investigators (Tang, Ommen, Saunders) engaged in conference calls via Zoom every other week to update the other participants on research projects and to coordinate and conduct collaborative eﬀorts. Overall, this award resulted in the training of 2 graduate students in the interpretation of forensic evidence, including 1 PhD graduate and 1 MS graduate. This award directly resulted in 1 PhD dissertation, 1 
	published paper with R codes, a R-Shiny app and 1 submitted paper. For a detailed list of research products and conference presentations, see Section 5. 

	4.2 Results and Findings 
	4.2.1 Research Question 1: Formalize Sampling Models 
	We considered a formal set-up of the identiﬁcation of source problem for three diﬀerent evidence types in this project: 1) questioned documents, 2) latent ﬁngerprints, 3) facial recognition. 
	Questioned Documents 
	The handwriting dataset we used was collected for NIJ award #2017-DN-BX-0148 lead by PI Mike Caligiuri. The dataset consists of measurements of several kinematic features for writing from 33 individuals and was described in Fuglsby et al. [15]. Following Ommen and Saunders [32], we considered the common source problem formulation. This particular formulation was chosen due to the nature of the data collection as short phrases rather than the subjects writing long, full-paragraph prompts. The common source p
	Hp: The two questioned documents originate from the same unknown writer. 
	Hd: The two questioned documents originate from two diﬀerent unknown writers. 
	The formal sampling models corresponding to the handwriting data deal with the generation of the kinematic features, and are equivalent to the common source sampling models provided in Ommen and Saunders [32]. However, it is not known at this time what the sampling distributions, denoted by Fa and G, for the kinematic data look like. For this reason, we chose to work with a score that captures the Wasserstein distance between kinematic features when developing ROC curves for this evidence (see Ommen et al. 
	Latent Fingerprints 
	The ﬁngerprint data we used in the project came from the National Institute of Standards and Technology Special Database 4 (NIST SD4). The process of comparing ﬁngerprints most often involves comparing a latent ﬁngermark from a crime scene to a full-rolled ﬁngerprint from a suspect. For this reason, we chose to use the speciﬁc source development of the sampling models given in Ommen and Saunders [32]. 
	In the ﬁngerprint context, possible sets of propositions include: 
	1. 
	1. 
	1. 
	Hp: the ﬁngermark and ﬁngerprint originate from the same person, vs. Hd: the ﬁngermark and ﬁngerprint originate from diﬀerent persons. 

	2. 
	2. 
	Hp: the ﬁngermark and ﬁngerprint originate from the same ﬁnger, vs. Hd: the ﬁngermark and ﬁngerprint originate from diﬀerent ﬁngers from the same person. 

	3. 
	3. 
	Hp: the ﬁngermark and ﬁngerprint originate from the same ﬁnger, vs. Hd: the ﬁngermark and ﬁngerprint originate from diﬀerent ﬁngers from diﬀerent persons. 
	-



	The formal sampling models corresponding to the ﬁngerprint data deal with the generation of minutiae, and are equivalent to the speciﬁc source sampling models provided in Ommen and Saunders [32]. Similar to the questioned documents example, it is not known at this time what the sampling distributions, denoted by Fs, Fa,and G, for the minutiae look like. For this reason, we chose to work with AFIS scores instead. 
	Facial Recognition 
	The facial recognition data that we used in the project came from the publicly available “Good, Bad, and Ugly” dataset. The common source propositions for facial recognition can be stated as 
	The facial recognition data that we used in the project came from the publicly available “Good, Bad, and Ugly” dataset. The common source propositions for facial recognition can be stated as 
	Hp: The two facial pictures originate from the same unknown person. 

	Hd: The two facial pictures originate from two diﬀerent unknown people. 
	The formal sampling models corresponding to the facial recognition data deal with the generation of facial images, and are equivalent to the common source sampling models provided in Ommen and Saunders [32]. However, it is not known at this time what the sampling distributions, denoted by Fa and G, for facial images look like. For this reason, we chose to work with comparison scores. The comparison scores represent measurement of the characteristic diﬀerence, and a smaller distance indicates higher similari
	-
	-

	4.2.2 Research Question 2: Evidence Interpretation via Error Rates 
	In situations where the features are too high-dimensional and complex, the score-based likelihood ratio (SLR) is used to provide some information about the value of evidence. Rather than modelling the original measurements, this approach models “scores” resulting from applying a distance function to the pair (X,Y). The deﬁnition of the SLR is 
	Pr(SX,Y |Hp)
	SLR(SX,Y )= ,
	Pr(SX,Y |Hd) 
	where SX,Y = S(X,...,Xm,Y,...,Yn) is the (dis)similarity score, a function of X and Y, Hp is the proposition that the pair X and Y come from the same source, and Hd is the proposition that the pair X and Y come from diﬀerent sources. In contrast to the speciﬁc source propositions for the LR, the propositions for the SLR are those for the common source problem [31]. Due to usually small sample sizes of X and Y, the reference population database is valuable for the estimation of the distributions of scores ne
	where SX,Y = S(X,...,Xm,Y,...,Yn) is the (dis)similarity score, a function of X and Y, Hp is the proposition that the pair X and Y come from the same source, and Hd is the proposition that the pair X and Y come from diﬀerent sources. In contrast to the speciﬁc source propositions for the LR, the propositions for the SLR are those for the common source problem [31]. Due to usually small sample sizes of X and Y, the reference population database is valuable for the estimation of the distributions of scores ne
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	fd. Here, the sample sizes for the pairwise comparisons are larger than the original sample sizes. 

	Evaluating the accuracy of diagnostic biomarkers is important in diagnostic medicine research. In diagnostic medicine, biomarkers are evaluated for their accuracy to distinguish a case who is truly diseased from a control who is not diseased. Diagnostic biomarker results can be binary, ordinal and continuous. Some biomarkers have binary results. Some biomarkers results have some ordered values such as 1, 2, 3, which are called ordinal data [3]. Most of the biomarkers in proteomics and genetics, are on a con
	-
	-

	The ROC curve indicates the trade-oﬀ between the true positive rate (TPR) (i.e. probability of identifying a case when the subject is truly diseased) and the false positive rate (FPR) 
	(i.e. probability of identifying a case when the subject is not diseased). The ROC curve is plotted by connecting all the points generated by a variety of possible thresholds [49]. The ROC curve is also widely used in radiology, psychophysical and medical imaging research for detection performance, military monitoring, and industrial quality control [20]. The ROC curve has many advantages and overcomes the limitation of using isolated measurements of TPR and FPR. 
	In the mathematical notation, TPR is given by P(T>c|D= 1) and FPR is given by P(T>c|D= 0) , where cdenotes the threshold, Tdenotes the biomarker outcome and D is the indicator for disease status with 1 being a case and 0 being a control. A biomarker with 100% TPR and 0% FPR is a perfect predictor. 
	The commonly used ROC measures are the diagnostic likelihood ratios (not to be confused with the LR weight of evidence deﬁned above), the area under the ROC curve (AUC), the TPR at a ﬁxed FPR, and the partial area under the ROC curve (pAUC). Most ROC curves are concave and above the chance diagonal which is the line segment between (0,0) 
	The commonly used ROC measures are the diagnostic likelihood ratios (not to be confused with the LR weight of evidence deﬁned above), the area under the ROC curve (AUC), the TPR at a ﬁxed FPR, and the partial area under the ROC curve (pAUC). Most ROC curves are concave and above the chance diagonal which is the line segment between (0,0) 
	and (1,1). However, some of them are below the chance diagonal and are called improper curves [17]. The AUC between 0.5 and 1 indicates that the diagnostic biomarker has a good performance on detecting the case condition and control condition. The closer the curve is to the left upper corner, the larger the ROC curve area is and the better ability of the diagnostic biomarker has. The perfect biomarker has an AUC of 1. 

	Order-Restricted ROC Curve Estimation 
	Consider V classiﬁcation markers measured on continuous scales to distinguish individuals between diseased and non-diseased groups. In biometric recognition, a classiﬁcation marker is a matching algorithm used to recognize an individual from others. The diseased and non-diseased observations correspond to genuine and imposter scores, respectively. 
	Without loss of generality, we assume that the outcome of a classiﬁcation marker is from the diseased (non-diseased) group if its value is greater (smaller) than a given threshold. Let Fv and Gv be the distribution function of the diseased and non-diseased observations for the vth marker, where v =1,··· ,V. The ROC curve of the vth marker at a threshold value uis then R (u)=1−F {G(1−u)},where G(u) = inf{t: G (t) ≥u}and u∈[0,1]. The AUC and 
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	and pAUC [1 − F {G(1 − u)}]du In various applications, AUC pAUC 
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	pAUC over the range (0,τ)ofthe vth marker are then AUCv 
	pAUC over the range (0,τ)ofthe vth marker are then AUCv 
	= 
	1[1 −F {G−1(1 −u)}]du0 v v 

	τ 
	τ 


	= v . or are
	v 0 v 
	used to compare the performance among markers. As noted earlier, a natural stochastic ordering commonly occurs among observations collected under diﬀerent conditions, which is particularly evident in ﬁngerprint data. To elaborate, consider a classiﬁcation marker v with observations Y from the non-diseased group and X from the diseased group. Then Y is said to be stochastically smaller than X, denoted by Y st X,if Fv(x) ≤ Gv(x)for x ∈R. Our aim is to model Rv(u) as an empirical process, and obtain the estima
	v

	Suppose that the V classiﬁcation markers are applied to m subjects. Corresponding to each 
	Suppose that the V classiﬁcation markers are applied to m subjects. Corresponding to each 
	subject i (= 1,··· ,m) and marker v (= 1,··· ,V), the observations from Fv and Gv are denoted by {Xvip : p =1,··· ,mvi} and {Yviq : q =1,··· ,nvi}, respectively. For each marker v, the observations {Xvip,Yviq : p =1,··· ,mvi,q =1,··· ,nvi} within a subject are clustered. Moreover, between-marker correlation also exists among the observations for diﬀerent markers. With such a data structure, both within-cluster and between-marker correlations need to be accounted for. 

	To accommodate such a complex correlation structure, we introduce the weighted ROC curve estimation which assigns diﬀerent weights to the observations from diﬀerent clusters. For v =1,··· ,V, write m = mvi and nv = nvi.Let {wvi,i =1,··· ,m} and
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	vi=1 {w,i =1,··· ,m} be two sequences of weights satisfying (1/m ) mviwvi =1 and 
	vi
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	vi=1 (1/n ) = 1. The weighted ROC curve estimators are established based on the
	m 

	vi=1 vivi 
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	following weighted empirical estimates of distribution functions 
	mmvi mnvi
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	Fv(x)= wvi I(Xvip ≤x)and Gv(x)= I(Yviq ≤x). (1)
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	i=1 p=1 i=1 q=1 
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	Here the weights wvi and ware used to account for within-cluster correlations. Choices of weights will be discussed in detail later. With Fv and Gv, the weighted ROC curve estimator is then given by Rv(u)=1 −Fv{G(1 −u)}, which subsequently yields an AUC estimator
	vi 
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	v AUCv = R (u)du and pAUC estimator pAUC = R (u)du over (0,τ).
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	0 v 0 
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	By incorporating the order restriction, we consider the order-restricted estimators for Fv and Gv deﬁned as Fv(x) = min{Fv(x),Qv(x)} and Gv(x)=max{Gv(x),Qv(x)}, respectively, where Qv(x)= ηvFv(x)+(1 −ηv)Gv(x)with0 ≤ ηv ≤ 1 is an estimator of the distribution function that generates the pooled observations {Xvi1,··· ,Xvim,Yvi1,··· ,Yvin,i = 1,··· ,m}. Notice that Fv(x)and Gv(x) are “order-preserving” in the sense that Fv(x) ≤ Gv(x) for any x ∈R. A natural choice of ηv is the proportion of sample sizes, namel
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	[48] and proportion of two samples’ mean value. In this article, we derive theoretical prop
	-

	erties for the order-restricted estimators with a general ηv, provided that 0 ≤ηv ≤1; in the simulation studies, we use ηv as the proportion of sample sizes. 
	Subsequently, Rv(u) is estimated by the empirical process Rv(u)=1 −Fv{G(1 −u)},
	−1

	v where 0 <u< 1. The summary statistics of the order-restricted ROC curve, AUCv and pAUCfor the vth marker, are given by 
	v 

	1 τ 
	AUCv = [1 −Fv{G(1 −u)}]du and pAUC = [1 −Fv{G(1 −u)}]du. (2)
	−1
	−1

	v vv 
	00 
	Proposition 1. The statistic AUCv is equal to 
	mv +nv 1 − ηv(1 −ηv)AkBk, (3) k=1 
	(v)(v)(v)(v)
	where Ak = ηvFv(Z )/(1 −ηv)+ Fv(Z ) ∧Gv(Z ), and Bk = {(1 −ηv)Gv(Z )/ηv +
	kkk k 
	(v)(v)(v)(v)(v)
	Fv(Z ) ∨Gv(Z )}−{(1 −ηv)Gv(Z )/ηv + Fv(Z ) ∨Gv(Z )}.
	kk k−1 k−1 k−1 
	We exemplify our proposed method with the NIST SD4 dataset, which is established to evaluate the accuracy of ﬁngerprint matching algorithms in the NIST Biometric Image Software package [47]. According to Henry classiﬁcation system [25], ﬁngerprint images can be classiﬁed into ﬁve coarse-level classes: “Arch”, “Left Loop”, “Right Loop”, “Tented Arch”, and “Whorl”. The coarse-level classiﬁcation is mainly used for excluding an individual, and not for identiﬁcation. For the identiﬁcation purpose, ﬁngerprint fe
	-
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	It is worth noting that the imposter scores of diﬀerent subjects can be correlated, since they 
	may be obtained by being matched with the same subject. To maintain independence among scores from diﬀerent subjects, instead of using all subjects in the sample, we ﬁrst randomly divided the sample into two groups and chose the ﬁrst group of subjects as the data sample for analysis. For these selected subjects, only the imposter scores obtained by matching their ﬁngerprints to those of subjects in the second group were considered. According to the ACE-V process of ﬁngerprint recognition [2], we took the ma
	To evaluate the discrimination accuracy of the Bozorth matcher, we apply the conventional, weighted empirical, and proposed method to these scores. For illustration, we ﬁrst focus on the ﬁngerprint matching scores of all female subjects in the “Arch” class. This subgroup includes 102 subjects. The intraclass correlation coeﬃcients for the genuine and imposter scores are estimated as = 1 (since each subject has only one genuine score) and = 0.285, respectively. The estimated ROC curves by three methods are d
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	Figure 1: (a) ROC curve estimator for female ﬁngerprint data: the conventional estimator (black solid line); the weighted empirical estimator (blue dashed line); the proposed estimator (red dotted line); (b) MSE ratios of the conventional and weighted empirical ROC estimators to the proposed estimators. 
	in Table 1. From this table, we can see that the variances of the proposed AUC and pAUC estimators are much smaller than the corresponding estimators in comparison, and the p-values of the proposed method are always the smallest among the three methods. 
	Relationship between SLR and ROC Curve 
	In this section, we explore the relationship between the SLR and the ROC curve. Recently, there has been a lot of debate surrounding the 2016 PCAST report [36]. In the report, there was a lot of attention on “feature-comparison” methods in forensic science. These methods refer to the process by which examiners perform visual comparisons of evidence, such as ﬁngerprints, ﬁrearms, footwear, hair, and bite marks. The foremost recommendation of the report was that, in an eﬀort to strengthen the scientiﬁc founda
	-

	Table 1: Performance of the conventional (Mc), weighted empirical (Mw), and the proposed (Mr) method on the estimation and hypothesis testing of AUC and pAUC for female ﬁngerprint data. The left panel is for estimation of the logit transformation of AUC and pAUC; the right panel are the p-values for the null hypothesis AUC = 0.6,0.7,0.8and pAUC = 0.2,0.3,0.4. 
	-

	Estimation 
	Estimation 
	Estimation 
	Test 

	log log 
	log log 
	AUC 1−AUC pAUC 1−pAUC 
	Estimate Variance CI Mc 0.982 0.084 [0.964, 1.000] Mw 1.085 0.086 [1.076, 1.094] Mr 0.987 0.021 [0.969, 1.006] Estimate Variance CI Mc -1.023 0.091 [-1.042, -1.004] Mw -1.018 0.092 [-1.038, -0.999] Mr -1.024 0.023 [-1.034, -1.015] 
	AUC=0.6 AUC=0.7 AUC=0.8 0.046 0.642 0.162 0.047 0.633 0.173 <.001 0.090 0.032 pAUC=0.2 pAUC=0.3 pAUC=0.4 0.230 0.560 0.041 0.226 0.572 0.043 0.017 0.245 <.001 


	(or SLR) and provide its value without going so far as to say which of the two propositions to choose. Any relationship between the SLR and ROC curve will bridge the gap between the binary classiﬁcation role of the ROC curve (under which error rates are clearly deﬁned) and the “weight of evidence”-style role of the SLR (under which error rates are ambiguously deﬁned, at best). If successful, our method will satisfy both the recommendation of the PCAST report (relying heavily on error rates) as well as the r
	Denote continuous similarity scores for the ith pair of mated evidence measurements as Tp,i,i=1,...,M, which follow a distribution, Fp, and continuous similarity scores for the jth pair of non-mated evidence measurement as Td,j ,j =1,...,N, which follow a distribution, Fd. In the forensic context, there are two common types of “error rates,” the random match probability (RMP) and the random non-match probability (RNMP). The RMP and RNMP are deﬁned relative to a threshold c; when a score T exceeds c then the
	Denote continuous similarity scores for the ith pair of mated evidence measurements as Tp,i,i=1,...,M, which follow a distribution, Fp, and continuous similarity scores for the jth pair of non-mated evidence measurement as Td,j ,j =1,...,N, which follow a distribution, Fd. In the forensic context, there are two common types of “error rates,” the random match probability (RMP) and the random non-match probability (RNMP). The RMP and RNMP are deﬁned relative to a threshold c; when a score T exceeds c then the
	“match” by chance. Similarly, the RNMP is deﬁned as RNMP(c)= P(Tp <c) for any mated score Tp, and is interpreted as the probability that a mated score will be declared a “non-match” by chance. 

	TheROC curveplots apairofpoints(FPR(c),TPR(c)), where c is the possible threshold, true positive rate TPR(c)=1 − Fp(c) and false positive rate FPR(c)=1 − Fd(c). The TPR(c) is also denoted as a survivor function TPR(c)= P(Tp >c)and FPR(c) is denoted as a survivor function FPR(c)= P(Td >c). Therefore, in the forensic context the ROC curve plots 1 − RNMP(c) against RMP(c) for a variety of thresholds, c.Let u be FPR(c), and let R(u)be TPR(c), and R(u)isgiven by R(u)=1 − Fp(F(1 − u)), where u is the false positi
	d 
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	The ﬁrst derivative of the ROC curve has been shown to be closely related to likelihood ratio (Choi, 1998). Speciﬁcally, the tangent at a point, u, of the ROC curve is written as R(u)= F(F(1−u))/F(F(1−u)).For a realized comparison score tx,y based on evidence
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	measurements, x and y, we write tx,y = (1 − u). Since it follows that u =1 − Fd(tx,y), we then have the mathematical relationship between the score-based likelihood ratio and the the tangent at a point u of the ROC curve SLR(tx,y)= R(1 − Fd(tx,y)). This applies to comparison scores on a continuous scale, which is commonly the case in ﬁngerprint matching. The SLR can be interpreted as the instantaneous change in the true positive rate in a unit change of 1 − Fd(tx,y). 
	d 

	Estimating the Score-based Likelihood Ratio 
	The relationship described provides a way to take advantage of both the LR-style and error rate-based approaches to forensic science, provided that the ROC curve can be estimated. Several methods of estimating ROC curves exist, including parametric, nonparametric and semiparametric methods. The parametric methods usually assume parametric distributions for diagnostic similarity scores and yield a smooth ROC curves. The nonparametric ROC methods do not have distribution at requirements. The semiparametric RO
	The relationship described provides a way to take advantage of both the LR-style and error rate-based approaches to forensic science, provided that the ROC curve can be estimated. Several methods of estimating ROC curves exist, including parametric, nonparametric and semiparametric methods. The parametric methods usually assume parametric distributions for diagnostic similarity scores and yield a smooth ROC curves. The nonparametric ROC methods do not have distribution at requirements. The semiparametric RO
	generate smooth ROC curves without distribution assumptions for the similarity scores. We will use parametric methods of estimating the ROC curve for the purpose of deriving SLR values based on the ROC curve. Then, we will compare those approaches to a popular method of obtaining the SLR without the use of an ROC curve. 

	Parametric ROC Curve Method. In a simple setting, after some monotone transformation, the mated and non-mated scores follow normal distributions Fp ∼ N(μp,σ)and Fd ∼ N(μd,σ), respectively. Since the mated scores are more likely to be larger than the non-mated scores, we have μp >μd. The resulting ROC curve is referred to as the binormal ROC method [13]. Normality of the original scores is checked through quantile-quantile plots for mated and non-mated groups, separately. If the normality assumption is inval
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	where λ, λare the parameters of Box-Cox transformation, λ= 0 and could be estimated by maximum likelihood estimator. It is worth noting that the monotone transformation should be the same for the two groups so that the underlying ROC curve remains unchanged. This is due to the transformation invariance of the ROC curve. For simplicity, we still use Tp,i and Td,j to denote the transformed normal scores. Without loss of generality, we assume that Tp,i has a larger mean than Td,j . Then, we have a parametric e
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	¯¯
	TPRPE (c)=1−Φ((ˆμd −c)/σˆd) where the sample means, μˆp = Tp and μˆd = Td are estimators for the Normal population means and the sample standard deviations σˆp = sp and σˆd = sd are estimators for the Normal population standard deviations. The ROC curve is plotted for all possible values of c and is given by RPE (u)=Φ(a+ bΦ(u)), where a =(μp − μd)/σp 
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	and b = σd/σp. The ﬁrst derivative of the ROC curve is given by 
	bφ(a + bΦ(u))
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	(u)= .
	PE 
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	φ(Φ(u))) 
	−1

	This gives a function of the TPR, u, instead of a function of a score. For a score, tx,y,the associated TPR is given by u = P (T>tx,y|Hd), or the probability of having a score greater than the observed score tx,y when the defence hypothesis is true. Hanley and Hajian-Tilaki 
	[18] recognize that 100 × (1 − u) is the percentile of tx,y in the non-mated scores. 
	Percentiles are commonly used to standardize growth and lung function measurements for children and to standardize many laboratory measures. By substituting u with a placement value 1 − Φ((tx,y − μd)/σd), we have the SLR using a parametric estimate (PE) under the binormal model 
	bφ(a + bΦ(1 − Φ((tx,y − μd)/σd))
	−1

	SLRPE (tx,y)= . (5)
	φ(Φ(1 − Φ((tx,y − μd)/σd)) 
	−1

	It follows from the symmetry of the standard normal density that the numerator of (5) can be simpliﬁed to be bφ(a + bΦ(Φ((−tx,y + μd)/σd)), or bφ(μp/σp − tx,y/σp), and the denominator can be simpliﬁed to φ((μd − tx,y)/σd). The log SLRPE at a score tx,y is then given by 
	−1

	log SLRPE (tx,y)=log σd/σp +log φ((μp − tx,y)/σp) − log φ((μd − tx,y)/σd). (6) 
	The estimators for a and b are obtained by substituting the sample means, μˆp = Tp and μˆd = Td and sample standard deviations, σˆp = sp and σˆd = sd for the true means and standard deviations: aˆ =(ˆμp − μˆd)/σˆp and b =ˆσd/σˆp. Then, log SLRPE (tx,y) is estimated by plugging in the corresponding estimates of mean and standard deviation. 
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	The estimated SLR needs the estimators for the mean and variances separately for both groups. Denote the parameter vector θ =(μp,σp,μd,σd)and its estimator θ=(ˆμp,σˆp,μˆd,σˆd). 
	T 
	ˆ
	T 

	The ﬁrst order Taylor expansion on the logarithm of the likelihood ratio is written as 
	log SLRPE (tx,y)=log SLRPE (tx,y)+ ∇log SLRPE (tx,y)(θ− θ). 
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	∂ log SLRPE ∂ log SLRPE ∂ log SLRPE ∂ log SLRPE
	∇ log SLRPE =( ,,, )
	T 

	∂μp ∂σp ∂μd ∂σd and the explicit expression for ∇ log SLRPE (tx,y)isgiven by 
	⎞
	⎛
	T 
	⎜⎜⎜⎜⎜⎜⎜⎝ 
	φ ((μp − tx,y)/σp)/(σpφ((μp − tx,y)/σp)) −1/σp − (μp − tx,y)φ ((μp − tx,y)/σp)/(σφ((μp − tx,y)/σp))) 
	p 
	2

	−φ ((μd − tx,y)/σd)/(σpφ((μd − tx,y)/σd)) 1/σd +(μd − tx,y)φ ((μd − tx,y)/σd)/((σφ((μd − tx,y)/σd))) 
	p 
	2
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	. 
	Thevarianceoflog SLRPE (tx,y) is derived from the ﬁrst order Taylor expansion 
	Thevarianceoflog SLRPE (tx,y) is derived from the ﬁrst order Taylor expansion 
	Thevarianceoflog SLRPE (tx,y) is derived from the ﬁrst order Taylor expansion 
	on 
	the 

	parameter vector (or the multivariate delta method): 
	parameter vector (or the multivariate delta method): 

	var(log SLRPE (tx,y)) = ∇T log SLRPE (tx,y
	var(log SLRPE (tx,y)) = ∇T log SLRPE (tx,y
	)cov(ˆθ)∇ log SLRPE (tx,y
	). 
	(7) 


	The variance and covariance elements in cov(θ) follow standard expressions. We have var(ˆ)= σ/M, var(ˆμd)= σ/N. With the normal distributions, the variance formu
	ˆ
	2
	2
	-

	pp d las are simpliﬁed to var(ˆσ)=2σ/(M − 1) and var(ˆσ)=2σ/(N − 1). The delta method 
	μ
	2
	4
	2
	4

	pp dd 
	gives the variance expressions for sample standard deviation: var(ˆσp)=1/(4σ)var(σ)= σ/(2(M − 1)), and var(ˆσd)= σ/(2(N − 1)). With these expressions, the covariance matrix 
	p 
	2
	2
	p 
	2
	d 
	2

	of θis
	ˆ 

	⎞
	⎛ 
	cov(θ)= 
	ˆ
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	σ/M 000 0 σ/2(M − 1)0 0 
	p 
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	p 
	4

	00 σ/N 0 000 σ/2(N − 1)
	d 
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	d 
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	Facial Recognition Example 
	We use a facial recognition data set, and apply PE, logistic regression estimation (LRE) and kernel density estimation (KDE) to investigate the variance, repeatability, and reproducibility of these methods. The biometric images were frontal face images taken with a digital single-lense reﬂex camera. The similarity scores were extracted from the picture comparison, and used in our study as the score. The data set has three categories, which are “good,” “bad,” and “ugly,” based on the quality of the images [3
	-

	We randomly select 2000 samples from the genuine group, and various numbers of samples from imposter group to vary the log sample size ratios of data from -2 to 2 by the increment of 0.1. We use this as training data for both PE, LRE, and KDE. Then, we calculate the LLR at the score of 25 for all the three methods. For LRE and KDE, we repeat the random selection 1000 times to get the empirical variances and then generate 95% conﬁdence intervals based on the variances. For PE, we use our variance estimate ap
	(7) to get the estimator and also the 95% conﬁdence interval. 
	Figure 2 shows the LLR values for the PE, KDE, and LRE methods when the sample size ratio varies. We see that both PE and KDE have good repeatability since they are not sensitive to varying sample size ratios. This is similar to our simulation ﬁndings which also show good repeatability of the PE and KDE methods. The repeatability of the LRE method is unsatisfactory because the LLR from the method takes on a wide range of values. For reproducibility, the PE method generates larger LLR values than the KDE met
	Figure 2 also shows the conﬁdence interval of LLR values for the PE, KDE, and LRE methods when the sample size ratio varies. Note that the conﬁdence interval is increasing as the log sample size ratio increases. That is because we ﬁxed the sample size of mated group and vary numbers of samples in non-mated group to increase the log sample size ratios of data from -2 to 2 by the increment of 0.1, so the total sample size is decreasing. Since the conﬁdence interval is dependent on sample size, this explains w
	Table 2 gives the ranges of the conﬁdence intervals along with the variance of the LLR for the PE, LRE, and KDE methods applied to facial recognition data. We only select three typical log sampling ratio for each method from the pool, which are -1.0, 0, and 1.0, and list the estimated LLR (LLR), the estimated lower bound (LB) and upper bound (UB)of the conﬁdence intervals, and the variance of the estimated LLR (Var(LLR)). Note that the 
	Table 2 gives the ranges of the conﬁdence intervals along with the variance of the LLR for the PE, LRE, and KDE methods applied to facial recognition data. We only select three typical log sampling ratio for each method from the pool, which are -1.0, 0, and 1.0, and list the estimated LLR (LLR), the estimated lower bound (LB) and upper bound (UB)of the conﬁdence intervals, and the variance of the estimated LLR (Var(LLR)). Note that the 
	variance and the width of the conﬁdence interval of PE and LRE are similar. The KDE method has the largest variance among all methods. All of the estimated LLR values and conﬁdence intervals are positive except for one LRE result when log sampling ratio is -1.0, which implies that for this situation we will conclude that the score belongs to a group diﬀerent from other decisions which were made with same score but diﬀerent methods or diﬀerent log sampling ratios. Therefore, the LRE method is less reliable t

	Figure
	Figure 2: Conﬁdence interval of estimated LLR in facial recognition data using PE, LRE, and KDE. 
	Table 2: Ranges of the conﬁdence interval for diﬀerent methods in facial recognition data 
	Method Log Sampling Ratio LLR LB UB Var(LLR) 
	PE -1.0 1.744 1.538 1.951 0.01113 0.0 1.920 1.623 2.217 0.02294 1.0 1.713 1.295 2.131 0.04548 
	LRE -1.0 -0.211 -0.424 0.002 0.01180 0.0 0.980 0.665 1.296 0.02597 1.0 1.777 1.414 2.141 0.03441 
	KDE -1.0 0.973 0.629 1.316 0.03067 0.0 0.721 0.268 1.173 0.05335 1.0 0.847 0.232 1.462 0.09855 
	Fingerprint Matching Example 
	We also apply the PE, LRE, and KDE methods to a set of ﬁngerprint comparison scores to study their reproducibility and repeatability for ﬁngerprints. The genuine and impostor comparison scores were generated by applying a ﬁngerprint comparison algorithm using NIST Biometric Image Software to National Institute of Standards and Technology Special Database 4. Genuine scores were obtained by comparing two patches of the same rolled print of the same ﬁnger, and imposter scores were obtained by comparing patches
	The patch sizes are 128 by 128, 192 by 192 or 256 by 256. The neighboring patches with the same x-coordinate are shifted by the half of the patch width. This way, half of the area in the neighboring patches are overlapped. For the patches of 128 by 128, the patch starts at the coordinate (1,1), and the next patch starts at (1,65). Every patch has the same size of 128 by 128. The comparison scores, the numbers of matching minutiae, and the distance to the singularity point are recorded. The average and the s
	The scores in the genuine group are generally greater than the score in the imposter group. The sample means and sample standard deviations are 350.9 and 293.6 for the genuine group, and 7.5 and 2.5 for the imposter group. In our computation of the LLR values using all three methods, we randomly select 4000 genuine scores and various numbers of imposter scores, so that the log sample size ratio ranges from -2 to 2 by the increment of 0.1. When the sample size ratio changes, we repeat the sampling procedure 
	To get the empirical variances and the 95% conﬁdence intervals for the LRE and KDE methods, 1000 iterations are adopted for each log sampling ratio value. For the PE method, our variance estimate approach given by Equation (7) was used to get the estimated variance and the 95% conﬁdence interval. We estimate the LLR at the score of 10 with all the LRE and KDE methods. Note that the PE method assumes that the data are normally distributed. 
	Since the ﬁngerprint scores data do not follow normal distributions, we use the Box-Cox power transformation given in Equation (4) to obtain the normality for both groups. We use a λ to transform both mated and non-mated data which is equal to the average of λ estimated from both groups separately. We also use the same λ value to transform the score 10. 
	Figure 3 shows the LLR values for the PE, KDE, and LRE methods when the sample size ratio varies. In terms of the repeatability, the LLR values from the PE and KDE methods have small ﬂuctuations when the sample size ratio varies. However, the LLR values from these two methods diﬀer by approximately 1. All the LLR values from these three methods are negative. If one uses zero as a decision threshold to decide whether the score 10 comes from Hp or Hd, all three methods should arrive at the same conclusion tha
	Figure
	Figure 3: Conﬁdence interval of estimated LLR in ﬁngerprint identiﬁcation data using PE, LRE, and KDE. 
	Table 3: Ranges of the conﬁdence interval for diﬀerent methods in ﬁngerprint identiﬁcation data 
	Method Log Sampling Ratio LLR LB UB Var(LLR) 
	PE -1.0 -3.453 -3.552 -3.354 0.002556 0.0 -3.369 -3.471 -3.226 0.002742 1.0 -3.429 -3.550 -3.307 0.003849 
	LRE -1.0 -3.786 -3.953 -3.618 0.007291 0.0 -2.731 -2.913 -2.548 0.008708 1.0 -1.875 -2.067 -1.682 0.009629 
	KDE -1.0 -3.788 -3.863 -3.712 0.001476 0.0 -3.554 -3.668 -3.440 0.003372 1.0 -3.588 -3.747 -3.429 0.006574 
	4.2.3 Research Question 3: Uncertainty Quantiﬁcation 
	The uncertainty quantiﬁcation of the SLR is explored through a simulation study using a varietyofmodelsfor thedata. 
	Binormal Data The datasets are generated using functions in R. Let Sp and Sd denote similarity scores simulated under the matching and non-matching groups, respectively, where Sp ∼ N(20, 9) and Sd ∼ N(10, 25). Then, we investigate the impact of the sample size ratio on the logarithm of the score-based likelihood ratio (LLR) values for a particular comparison score. We chose the score s, as the score at which the true genuine (matching) and impostor (non-matching) probability density functions intersect. The
	0
	0 
	0 

	Let M and N represent the sample sizes of genuine group and imposter group, respectively. To examine the variance, ﬁx the total sample size to be M + N = 10000, and vary the log sampling ratio log(M/N)from-2to2by0.1,soweused 41 pairsof(M, N). For each pair of sample sizes, we simulate 1000 sets of simulated scores, and we denote the true variance (Var(LLR)) as the variance of the 1000 LLR. The estimated variance (Var(LLR)) is given by Equation (7). 
	Next, the coverage is the percentage of the 1000 LLR covered by the 95% conﬁdence interval which is: 
	0+ Z.95 × Var(LLR), 0 − Z.95 × Var(LLR)) 
	0
	0

	since the true LLR for sis 0. The resulting variances and coverages for the simulated data are given in Figure 4 below. 
	0 
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	As seen in Figure 4 (left), the estimated variance agrees well with the true variance. Both of them reach their minimum with log sampling ratio equal to around 0.5. Moreover, it is shown in the Figure 4 (right), the conﬁdence interval coverage varies about 95% with amplitude of 1%. 
	Other Data Types The data sets are generated using functions in R [37]. We compare PE, KDE and LRE in three simulation studies with diﬀerent distributions for genuine and imposter groups. The data sets from each group follow diﬀerent distributions described in Table 4. The distributions and parameters in each study are obtained from real data sets [16]. 
	10000 data for each group is generated for each set up, and we randomly select data set from the total data based on the sample size (M, N). After this, we repeat the random selection step 1000 times, and calculate the empirical coverage. That is, we generate the conﬁdence interval based on the variance, and check if the estimated LLR from the 1000 iterations falls within the conﬁdence interval. We ﬁnd the value of sfor each set up, which is the score for the true genuine and impostor probability density fu
	0 
	0 

	0+ Z.95 × Var(LLR), 0 − Z.95 × Var(LLR)) 
	0
	0

	since the true LLR in sis 0. The Bias in the table is given as 
	0 

	Bias SLR = |SLR − SLR| = |1 − SLR|. 
	We use SLR here (instead of the logarithm of the SLR) because the diﬀerence of the LLR values will give us very small numbers and is also hard to interpret. 
	Table 4: Distributions and parameters in the three simulation studies 
	Study 
	Study 
	Study 
	fp(sx,y) 
	fd(sx,y) 

	TR
	Distribution 
	Parameters 
	Distribution 
	Parameters 

	1 
	1 
	Normal 
	Mean = 20 Variance = 9 
	Normal 
	Mean = 10 Variance = 25 

	2 
	2 
	Uniform 
	Min = 0 Max = 1 
	Beta 
	shape1 =0.8 shape2 =17 

	3 
	3 
	Normal 
	mean = 2 variance = 4 
	t 
	Degrees of Freedom = 2 


	Figure 5 displays the bias and coverage estimation using the PE, KDE, and LRE methods. For the results of the PE method applied to the binormal dataset, the bias is small and the coverage is close to 95%. But when the data are not from normal distributions, the bias increases and the coverage is far diﬀerent from 95%. This makes sense since the PE method relies on the distributional assumption. The results of the LRE method are heavily 
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	Figure 5: Bias and Conﬁdence Interval Coverage with PE, KDE, and LRE method. 
	inﬂuenced by the sample size. Note that when we increase the diﬀerence between np and nd, the bias of the LRE method increases and the coverage of LRE decreases dramatically. Overall, when the sample size diﬀerence is larger than 100, the coverage is no more than 30%. The KDE method produces small biases and the coverage is close to 95% through all the settings. Generally, when the sample size gets larger, the bias becomes smaller and the coverage gets closer to 95%. 
	4.2.4 Research Question 4: Visualization 
	One visual solution we explored in the project is developed from the relationship between the ROC curve for the Two-Stage approach and the likelihood ratio (LR). The derivative of the ROC curve is shown to be closely related to likelihood ratio [6]. Speciﬁcally, the LR is interpreted as the instantaneous change in the 1-RNMP in a unit change of RMP. An illustration of the relationship between ROC and LR is given in Figure 6 for simulated scores from normal distributions. 
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	Figure 6: Left panel: dash curve– normal density of diﬀerent-source scores, solid curve– normal density of same-source scores; right panel: solid black curve – ROC curve, the slope of the red line is likelihood ratio at the false match rate (or RMP)=0.2181 
	Additionally, the ﬁgures in Sections 4.2.1-4.2.3 illustrate the visualization tools for uncertainties associated with error rates and likelihood ratios. 
	-

	4.3 Impact 
	The project has implications in shifting forensic practice paradigms in several important ways. First, formalizing source and sub-source propositions builds the foundation for forensic 
	The project has implications in shifting forensic practice paradigms in several important ways. First, formalizing source and sub-source propositions builds the foundation for forensic 
	evidence interpretation. Second, the proposed paradigm based on error rates involves the interpretation of forensic evidence in a similarity stage and an exclusion stage. The paradigm is more intuitive for forensic scientists to understand than giving one single number based on likelihood ratio. Interpreting the forensic evidence in separate stages also provides the jury more information than the likelihood ratio. Finally, a set of visualization tools developed in the project present forensic examiners intu

	The work performed for this project has supported the Federal Bureau of Investigation Laboratory Division on research projects related to the interpretation of forensic evidence from handwriting and improvised explosive devices. The work performed has also supported National Institute of Standards and Technology on research projects related to accuracy evaluation of biometrics algorithms. 
	5 Artifacts 
	5.1 List of Products 
	1. 
	1. 
	1. 
	Zhang, W, Tang, LL, Li, Q, Liu, A, Lee, M-LT. Order-restricted inference for clustered ROC data with application to ﬁngerprint matching accuracy. Biometrics. 2020; 76: 863– 873. 
	https://doi.org/10.1111/biom.13177 


	2. 
	2. 
	Larry Tang, Xiaochen Zhu, Ty Nguyen, Danica M. Ommen, Elham Tabassi. Score-based Likelihood Ratios based on ROC Curve Analysis and the Variabilities of the Likelihood Ratios, submitted to Science and Justice. 

	3. 
	3. 
	Dr. Larry Tang and his student Mengling He developed a Shiny app for evaluating the error rates and providing the variability of the error rates. The link to the Shiny app is _ calculation/. 
	-
	https://forensicaccuracy.shinyapps.io/order_constrained_ROC


	4. 
	4. 
	The R codes and the datasets are provided at: / larrytang/software?authuser=0 
	https://sites.google.com/view



	5.2 Data Sets Generated 
	None. 
	5.3 Dissemination Activities 
	Conference Presentations 
	Feb 2019 -Drs. Chris Saunders and Danica Ommen presented “On the Development of Score Rules for the Pairwise Sample Comparison of Particle Micromorphometry of Aluminum (Al) Powders” at the 2019 American Academy of Forensic Sciences Conference. 
	-

	Sept 2019 -Dr. Danica Ommen presented “Which Forensic Likelihood Ratio Approach is Better?” at the 10International Workshop on Simulation and Statistics. 
	th 

	Sept 2019 -Dr. Chris Saunders presented (with Dr. Danica Ommen as coauthor) “The Incorporation of U-processes for Bayesian Approaches to Pattern Recognition with Application to Forensic Source Identiﬁcation” at the 10International Workshop on Simulation and Statistics. 
	th 

	Sept 2019 -Dr. Larry Tang presented (with Dr. Danica Ommen as coauthor) “The Conﬁdence Interval for the Likelihood Ratio with Application to Biometrics” at the 10International Workshop on Simulation and Statistics. 
	-
	th 

	Sept 2019 -Ms. Cami Fuglsby presented (with Drs. Chris Saunders and Danica Ommen as coauthors) the poster “A Class of Score Functions for the Analysis of Kinematic Handwriting Data” at the 10International Workshop on Simulation and Statistics. 
	th 

	Feb 2020 -Ms. Cami Fuglsby presented (with Drs. Chris Saunders and Danica Ommen as coauthors) “The Interaction of Writing Proﬁles and Automated Scoring Rules” at the 2020 American Academy of Forensic Sciences Conference. 
	Mar 2020 -Dr. Xiaochen Zhu presented (with Dr. Larry Tang as coauthor) “ROC Methodology For Estimating Source-matching Likelihood Ratios and Evaluating Demographic Eﬀects” at the Pittcon 2020 conference. 
	-

	Aug 2020 -Dr. Danica Ommen presented (with Drs. Larry Tang and Christopher Saunders as coauthors) “A Method of Forensic Evidence Interpretation Using Error Rates” at the Joint Statistical Meetings . 
	-

	Dec 2020 -Dr. Danica Ommen presented (with Drs. Larry Tang and Christopher Saunders as coauthors) “A Method of Forensic Evidence Interpretation Using Error Rates” at the International Chinese Statistical Association (ICSA) Applied Statistics Symposium. 
	-
	-

	Dec 2020 -Dr. Chris Saunders presented (with Dr. Danica Ommen as coauthor) “Bayesian Characterizations Of U-processes Used In Pattern Recognition With Application To Forensic Source Identiﬁcation” at the International Chinese Statistical Association (ICSA) Applied Statistics Symposium. 
	Dec 2020 -Dr. Xiaochen Zhu presented (with Dr. Larry Tang as coauthor) “Order-Constrained ROC Regression with Application to Facial Recognition” at the International Chinese Statistical Association (ICSA) Applied Statistics Symposium. 
	-

	Seminars/Workshops 
	Jan 2019 -Dr. Chris Saunders organized an invited session “Forensic Statistics” for the 10International Workshop on Simulation and Statistics in Salzburg, Austria. 
	th 

	Feb 2019 -Dr. Larry Tang presented “Order-Restricted Inference for Evaluating Error Rates with Application to Fingerprint Matching” in the Department of Biostatistics, Bioinformatics & Biomathematics at Georgetown University. 
	Mar 2019 -Dr. Larry Tang presented “Order-Restricted Inference for Evaluating Error Rates with Application to Fingerprint Matching” in the Department of Statistics at University of Central Florida. 
	Sept 2019 -Dr. Tang gave a tutorial titled “Estimation of Soft-biometrics from ﬁngerprints” at 10IEEE International Conference on Biometrics: Theory, Applications 
	-
	th 

	and Systems (BTAS) 
	Dec 2019 -Dr. Larry Tang organized an invited session “Current advances in forensic statistics” for the International Chinese Statistical Association (ICSA) Applied Statistics Symposium. 
	-

	Jan 2021 -Dr. Chris Saunders organized a topic contributed session “Bias and Interpretability in Biometrics for Forensic Science” for the 2021 Joint Statistical Meetings 2021. 
	-
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